
On the Comparison of
Software Quality Attributes for

Client-side and Server-side Rendering

Dissertation Submitted in June 2018 to the Department of Mathematics and Computer Science
of the Faculty of Sciences, University of Antwerp,
in Fulfillment of the Requirements for the Degree of Master of Science in Computer Science:
Software Engineering.

Mathias Beke

Prof. dr. Serge Demeyer
Principal Adviser

dr. Gulsher Laghari
Assistant Adviser

Contents

Nederlandstalige Samenvatting . 5

Abstract . 6

Acknowledgments . 7

List of Figures . 8

List of Tables . 10

1 Introduction . 11

1.1 Why Compare Client-side with Server-side Rendering 11

1.2 How Compare Client-side with Server-side Rendering? 12

1.3 Thesis Outline 13

2 Background . 14

2.1 Client-side rendering and server-side rendering 14
2.1.1 Server-side rendering . 14
2.1.2 Client-side rendering . 15

2.2 Evolution of Web development 16
2.2.1 The World Wide Web . 16
2.2.2 Evolution of Technologies . 18
2.2.3 Evolution of Web and Technologies . 20

2.3 Overview of Technology Stack 21

CONTENTS 3

3 Software Quality Attributes . 23

3.1 Quality Attributes 24
3.1.1 Usability & User Experience . 24
3.1.2 Performance . 24
3.1.3 Development Effort . 27
3.1.4 Maintainability . 28
3.1.5 Scalability . 28
3.1.6 Compatibility . 28
3.1.7 Security . 29
3.1.8 Reliability & Availability . 29

3.2 Opinion of Developers on Quality Attributes 30
3.2.1 Survey Questions . 30
3.2.2 Results from Survey . 33

3.3 Conclusion 34

4 Pilot Study . 35

4.1 Methodology 35
4.1.1 Web application . 35
4.1.2 Measurement tools . 36

4.2 Results 37
4.2.1 Client: initial page load time . 37
4.2.2 Client: subsequent page load time . 38
4.2.3 Server: throughput . 39
4.2.4 Server: bandwidth . 40
4.2.5 Development Effort . 41

4.3 Conclusion 42

5 Case Study on Existing Projects . 43

5.1 Motivation 43

5.2 Methodology 44
5.2.1 Selecting Repositories . 44
5.2.2 Analysis . 44

5.3 Analysed Repositories and Their Characteristics 45

5.4 Results 47
5.4.1 Client: initial page load time & subsequent page load time 47
5.4.2 Server: throughput . 47
5.4.3 Server: bandwidth . 47
5.4.4 Scalability . 48

CONTENTS 4

5.4.5 Development Effort . 50
5.4.6 Availability . 51

5.5 Conclusion 51

6 Threats To Validity . 52

7 Conclusions . 53

8 Future Work . 56

References . 60

Appendix . 69

Nederlandstalige Samenvatting

Het doel van dit onderzoek is om de verschillen tussen client-side rendering
en server-side rendering te bestuderen. Daarnaast is het ook de bedoeling om
ontwikkelaars te helpen in de keuze tussen deze twee rendering paradigma’s.

Allereerst worden — naast het aangeven van de noodzaak voor deze ver-
gelijkende studie — de verschillen tussen client-side en server-side rendering
uitgelegd. Hierna volgt een overzicht van de evolutie van het world wide web,
en een verduidelijking van welke technologieën er effectief gebruikt worden
om webapplicaties met beide rendering paradigma’s te implementeren.
Daarna worden de verschillende software kwaliteitsattributen geïntroduceerd
en besproken waarop deze vergelijkende studie gebaseerd is. Verder is er een
enquête gedaan a.h.v. een uitgebreide lijst van kwaliteitsattributen. Deze
enquête biedt eerste inzichten in wat ontwikkelaars denken over de verschillen
tussen de twee rendering paradigma’s, en geeft nogmaals aan dat er nood is
aan een vergelijkende studie

Het eerste onderzoek wordt gedaan in de pilot study a.h.v. zelfgeschreven
webapplicaties. Op deze projecten worden performance en development time
gemeten.
Vervolgens wordt een case study gedaan a.h.v. bestaande opensourceprojec-
ten. Op deze Github projecten wordt de performance, scalability, develop-
ment effort en availability onderzocht.

Er wordt vastgesteld dat client-side rendering de voorkeur geniet wanneer
er belang gehecht wordt aan de volgende kwaliteitsattributen: server band-
width, server throughput, next page load times, usability en scalability. Server-
side rendering daarentegen geniet de voorkeur voor volgende kwaliteitsattri-
buten: initial page loads, development effort, search engine optimisation en
browser compatibility. Gebaseerd op deze bevindingen wordt een beslissings-
boom opgesteld om developers te helpen de keuze te maken tussen de twee
rendering paradigma’s.

Abstract

The main goal of this study is to investigate the differences between client-
side rendering and server-side rendering and to advise developers on making
the choice between those two rendering paradigms.

First, the need for such a comparative study is explained, as well as the two
rendering paradigms. This is followed by an overview of how the world wide
web changed over the years and an explanation of the current technologies
that are actually used for implementing web applications with both client-
side rendering and server-side rendering.
Then, the different software quality attributes on which the comparison is
based are introduced and explained. Furthermore, a survey is performed
on an extensive list of quality attributes. This survey gives first insights in
what developers think about the differences between the two paradigms, and
shows again the need for a comparative study.

The first investigation is done by means of a pilot study on self-written web
applications. On this projects the performance and development effort are
measured.
Then, a case study is done on existing open source projects. On these exist-
ing Github repositories, the performance, scalability, development effort and
availability are investigated.

It is found that client-side rendering is to be preferred when the following
attributes are important: server bandwidth, server throughput, next page load
times, usability and scalability. Server-side rendering, on the other hand, is
the be preferred for the following attributes: initial page loads, development
effort, search engine optimisation and browser compatibility. Based on this
findings a decision tree is composed to guide developers in making the choice
between the two paradigms.

Acknowledgments

I would like to thank Prof. dr. S. Demeyer and dr. G. Laghari for all the
advice and feedback on this thesis. I am also grateful to them that I could
introduce and develop my own research topic.

I am profoundly grateful for all the input that T. Truyts gave me on the
subject and for his patience to proofread this thesis twice and continuously
listen to my thoughts about the research.

I would also like to thank everyone who participated in the survey, especially
those who helped me distribute the survey on social media.

Finally, my heartfelt thanks go to my friends and family, who always support
and tolerate me. Special thanks go to my parents, who patiently encouraged
me and are always there to help me.

List of Figures

2.1 Sequence of server-side rendering 15
2.2 Sequence of client-side rendering 16
2.3 Evolution of web and technologies c©Clark Quinn [71] 20
2.4 Technology stacks for client-side rendering and server-side ren-

dering. 21

3.1 Page abandonment rate in relation to initial load time [22]. . . . 25

4.1 Network waterfall of server-side rendering for initial page load. . 37
4.2 Network waterfall of client-side rendering for initial page load. . . 38
4.3 Network waterfall of server-side rendering for next page load. . . 38
4.4 Network waterfall of client-side rendering for next page load. . . . 38
4.5 Throughput in Go project: API call compared to rendered page. 39
4.6 Throughput in PHP/Laravel project: API call compared to

rendered page. 40
4.7 Bandwidth used by Go project: API call compared to ren-

dered page. 40
4.8 LOC (lines of code) for the same test web app. 41
4.9 Time spent on writing the two test web apps. 41

5.1 LOC compared for exactly the same tasks, written in both
Javascript and PHP. 46

5.2 Throughput in Wordpress: API call compared to rendered theme. 47
5.3 Bandwidth used by Wordpress: API call compared to ren-

dered page. 48
5.4 Bandwidth used by Wordpress when using Gzip compression:

API call compared to rendered page. 48
5.5 Scalability of Wordpress without loading other assets. 49
5.6 Scalability of Wordpress when loading other assets. 50
5.7 KLOC (thousands of lines of code) for each of the Github projects.51

LIST OF FIGURES 9

7.1 Decision tree which aids developers in making the choice be-
tween client-side rendering and server-side rendering. 55

8.1 Occupation of the respondents . 69
8.2 Highest Education of the respondents 69
8.3 Experience in Software Development 70
8.4 Experience with client-side rendering frameworks (like Angu-

lar, Vue, React). 70
8.5 Preference of paradigm. 71
8.6 Which metrics have the most influence on the choice of paradigm. 71
8.7 Which paradigm is most testable. 72
8.8 Which paradigm is most modifiable. 72
8.9 Which paradigm is most flexible. 72
8.10 Which paradigm requires most development effort. 73
8.11 Which paradigm yields most duplicate code. 73
8.12 Which paradigm yields code defects/bugs. 73
8.13 Which paradigm yields more maintainable code? 74
8.14 Which paradigm yields more efficient code? 74
8.15 Which paradigm yields better usability? 74
8.16 Which paradigm results in best extendability? 75
8.17 Which paradigm scales best? . 75
8.18 Do you think the impact of client-side rendering on SEO is

still noticeable anno 2018? . 75
8.19 Did you notice impact on server load using one of the paradigms? 76
8.20 Network waterfall of client-side rendering for initial page load

for Wordpress theme. 104
8.21 Network waterfall of server-side rendering for initial page load

for Wordpress theme. 105
8.22 Network waterfall of client-side rendering for next page load

for Wordpress theme. 106
8.23 Network waterfall of server-side rendering for next page load

for Wordpress theme. 106

List of Tables

3.1 List of demographic related questions in the survey. 30
3.2 List of software engineering related questions in the survey. . . . 32

5.1 Selected client-side rendered repositories 45
5.2 Selected server-side rendered repositories 46

CHAPTER1
Introduction

With the arrival of Web 2.0, the Internet changed drastically from a whole
of static pages, to more dynamic content with enriched user interaction [52].
This paradigm shift from server-side rendering to client-side rendering, which
delegates more processing work to the client, resulted into single page ap-
plications – websites using client-side rendering instead of fetching HTML
pages rendered at server [55] [23].
This thesis discusses the differences between these two rendering paradigms
and compares them on software quality attributes.

1.1 Why Compare Client-side with Server-side Rendering
There are numerous consequences of choosing one paradigm over the other.
The preference of one paradigm over the other has for instance some ram-
ifications for the page load times, development, and maintenance cost [95]
[77]. The increased page load times may translate to customer abandon-
ment [62]. Similarly, search engine optimisations and browser compatibility
are also impacted by the choice [11] [6].

Lack of Literature
Literature around these consequences is found mainly in blogposts, in which
the personal experience and opinion of one developer or one team is proposed.
Although there exists literature about modern technologies, including sin-
gle page applications and client-side rendering [57] [37] [54], searching for
academic literature on this specific topic yields no results.

1.2 How Compare Client-side with Server-side Rendering? 12

Difficulty for Developers
On the other hand, organisations struggle to decide which rendering strategy
to choose for their specific applications. For example, Twitter originally used
server-side rendering and then switched to client-side rendering in 2010 [76].
Then, they switched back to server-side rendering again in 2012 [90].
This implies that a comparison to help objectively decide which paradigm
to choose from the two would be helpful.

Conclusion 1.1.1
There is a clear need for a comparative study between client-side rendering
and server-side rendering.

1.2 How Compare Client-side with Server-side Rendering?
Choosing one rendering paradigm over the other has its consequences. This
implies that to decide which rendering paradigm to choose from the two, the
two paradigms need to be compared in terms of software engineering quality
attributes.

The goal of this research is to get insights on which paradigm yields the best
results for which quality attribute, such that developers can make informed
decisions when choosing one rendering paradigm over another.

First the criteria of the comparison, i.e. quality attributes, were selected.
A survey was conducted on developers to get their insights on the quality
attributes.
A pilot study was done by comparing equivalent self-written test projects on
the selected quality attributes. Then, a more elaborate study was done by
comparing real-world projects found on Github.

1.3 Thesis Outline 13

1.3 Thesis Outline
To begin, the research is introduced in this chapter (Chapter 1): In Sec-
tion 1.1 the need for this comparative study is explained.

The content of this thesis is further structured like this:

In Chapter 2 the difference between client-side rendering and server-side
rendering is explained. The chapter also gives an overview of how web de-
velopment has evolved until now.

In Chapter 3 the selected quality attributes are introduced, and the impact
of client-side rendering and server-side rendering is explained (Section 3.1).
Based on this selection first insights were gathered using a developer oriented
survey (Section 3.2).

The first actual measurements are done in Chapter 4: equivalent test
projects were programmed with two development stacks: one equivalent pair
was created in Go, the other was created in Laravel.

In Chapter 5, more thorough measurements were done on real-world repos-
itories — which were found on Github.

The validity of those results is discussed in Chapter 6.

The overal conclusions are drawn in Chapter 7, and a decision three is
proposed to help developers choose the most suited paradigm.

Finally, generalisations are proposed in Chapter 8.

The performance related parts from Chapter 4 and Chapter 5, as well
as the generalisations from Chapter 8 were submitted in a paper to the
ProWeb 2018 1 conference. Although the paper got rejected, a lot of useful
feedback was gather from the reviews and incorporated in this document.

1https://2018.programming-conference.org/track/proweb-2018-papers

https://2018.programming-conference.org/track/proweb-2018-papers

CHAPTER2
Background

2.1 Client-side rendering and server-side rendering
Before the research about client-side rendering and server-side rendering can
be discussed, the differences between these paradigms should be explained.
Those differences are thus explained in this section.
We talk about server-side rendering if for each change the user makes, the
complete page must be sent back again by the server. If only the changed
content is updated by the client, we talk about client-side rendering. [95]
[45]

2.1.1 Server-side rendering
Server-side rendering is mostly used in older web apps and static web pages.
PHP, APS.NET, Java server pages, ... they were all conceived to render
HTML code on the server. This means that the server fetches the data from
the database, renders this data in HTML, and sends it back to the client
(Figure 2.1).

An example of server-side rendering is the website of the University of
Antwerp1: looking into the source code, returned by the server, shows that
the complete HTML page is rendered by the server.

1https://www.uantwerpen.be/nl/

https://www.uantwerpen.be/nl/

2.1 Client-side rendering and server-side rendering 15

Client Server Database

GET /items
Retrieve data

Render data

Rendered html

Figure 2.1: Sequence of server-side rendering

2.1.2 Client-side rendering
In modern web development (and software development in general), the data
and the front-end are both treated separately [37]. The backend is developed
in one programming language, and exposes its data through an API. The
client fetches the data and renders it. Whether it is a web app or a mobile
app, they fetch the data from the same API.
Putting this in the context of a web app, this means that the server first
sends the code of the web app (mostly being a simple HTML page with
minimal elements, and Javascript code containing all the logic) to the client.
The client then fetches the data from the servers’ API. This data is then
rendered by the client (Figure 2.2).

Rendering the data is mostly done by the use of a Javascript front-end
framework in modern web development. The world of these frameworks
is dominated by Angular2 and React3. There are of course a lot of growing
frameworks available (like Vue4), but the former are the most used [28] [30].

An example of this is the website of the city of Antwerp5: only the most
necessary HTML code is passed to the client, after which the client renders
all the pages itself.

2https://angular.io
3https://reactjs.org
4https://vuejs.org
5https://www.antwerpen.be

https://angular.io
https://reactjs.org
https://vuejs.org
https://www.antwerpen.be

2.2 Evolution of Web development 16

Client Server Database

GET /index.html

Retrieve data

Render data

JSON data

GET /api/items

Figure 2.2: Sequence of client-side rendering

2.2 Evolution of Web development
The evolution of web development and web technologies is explained in this
section. This explains how the shift from server-side rendering to client-side
rendering came about.

2.2.1 The World Wide Web
The world wide web was initially invented in 1989 by Tim Berners-Lee [9].
The very first version of the world wide web at CERN was built upon the
first versions of HTTP (HyperText Transfer Protocol) [46] and HTML (Hy-
perText Markup Language) [8]. These web pages were served by the first
web server [51]. Bernes-Lee also wrote the first web browser to access this
newly created web [7].

The world wide web has drastically changed since its original conception in
1989. To get a better view on this evolution, the web is divided into different
phases: Web 1.0, Web 2.0, Web 3.0, and Web 4.0 [42] [3] [27].

Web 1.0
The original world wide web — as proposed by Tim Berners-Lee — consisted
of static pages, through which users could share information [3]. It was mono-
directional, meaning that organisations shared information (like brochures,
catalogues, ...) in a read-only way. This data was presented on static HTML
pages which changed infrequently over time. Users could not contribute to
existing web pages.

Web 2.0
The term Web 2.0 was orignally invented by Dale Dougherty [3] [67]. Tim
O’Reilly later defined Web 2.0 as follows [66]:

Web 2.0 is the business revolution in the computer industry caused
by the move to the internet as platform, and an attempt to under-

2.2 Evolution of Web development 17

stand the rules for success on that new platform. Chief among
those rules is this: Build applications that harness network ef-
fects to get better the more people use them. (This is what I’ve
elsewhere called "harnessing collective intelligence.")

Web 2.0 can be denoted by the following synonyms to describe its meaning
[3]:

• Wisdom Web

• People-centric Web

• Participative Web

• Read-write Web

Allowing users to both read from web pages and write to web pages made
the web become bi-directional. This allowed webpages to be updated more
frequently, but also allowed user contributions, make it possible for crowd-
sourced platforms, wikis, and social networks to be created.

Web 3.0
Web 3.0, also called semantic web, extends the web pages from Web 2.0 with
machine readable meta-data. This makes discovery, integration, automation,
and reuse amongst multiple applications of data possible [3]. This machine-
consumable data is shared by services/API’s. Internet of Things also comes
into play here to crowd-source this data [42].

Web 4.0
Web 4.0, also called WebOS, is nothing more than an idea right now [3]. The
idea is that the web becomes an intelligent system which enables symbioses
between humans and machines.

2.2 Evolution of Web development 18

2.2.2 Evolution of Technologies
The evolution of websites also means the evolution of the technologies and
techniques used to build those websites.

Static HTML
In the days of Web 1.0, where web pages did not change dynamically, browsers
were very rudimental and websites were small. So it was adequate to create
a static HTML file containing all the content and design which would never
be automatically updated. Such an HTML file looks like this:

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <t i t l e>This i s a t i t l e</ t i t l e>
5 </head>
6 <body>
7 <p>Hel lo world !</p>
8 </body>
9 </html>

Later, when browsers developed visual abilities, style sheets were needed.
Håkon W Lie proposed a first version of CSS (Cascading Style Sheet), which
is still used today [49]. A simple stylesheet looks like this:

1 body {
2 background−color : s i l v e r ;
3 }
4

5 p {
6 font−s ize : bold ;
7 }

Example: A good example of a static website is the Prof. Demeyer’s web-
site6. Very simple layout, built only with HTML and CSS.

Dynamic Web Pages
Together with the first dynamic websites came the need for the first server-
side programming technologies. In early days programming on the server-
side was done directly in the webserver. Later the CGI (Common Gateway
Interface) standard was developed, which made it possible for the webserver
to interact with any local process.
Later, languages like Perl, Java, PHP, and ASP (and others) became popular
for server-side programming [69].

6http://win.ua.ac.be/~sdemey/

http://win.ua.ac.be/~sdemey/

2.2 Evolution of Web development 19

Example: Any website built with a content management system (like Drupal,
Wordpress, Joomla, ...) is a dynamic website. The website of the student
circle7 is a good example of such a dynamic website.

Web Applications
Websites becoming richer in features requires more flexibility and better
usability. This is where client-side programming comes into play. Without
the need of completely reloading a page, content can be changed by end-
users. The mostly used technology for this purpose is Javascript [42].
When client-side features became even more important, frameworks were
conceived for client-side rendering (and controlling) of pages. The most
known frameworks here are: Ember8, Angular9 and React10.

Example: Online web applications like Google Drive, Slack, ...

Progressive Web Applications
The next step in web development is making standalone web applications
which can also be used offline. They are called PWA (Progressive Web Ap-
plications) [10] [72]. Making such applications is not possible without having
full control at the client-side. Server-side rendering is thus impossible and
fully fledged front-end frameworks are used to build these kind of applica-
tions. Communication is handled through API’s.

Example: Twitter Mobile11

7https://www.winak.be
8https://emberjs.com
9https://angular.io

10https://reactjs.org
11https://mobile.twitter.com/home

https://www.winak.be
https://emberjs.com
https://angular.io
https://reactjs.org
https://mobile.twitter.com/home

2.2 Evolution of Web development 20

2.2.3 Evolution of Web and Technologies
The evolution of the world wide web combined with the evolution of the
technologies is shown in Figure 2.3.

Figure 2.3: Evolution of web and technologies
c©Clark Quinn [71]

2.3 Overview of Technology Stack 21

2.3 Overview of Technology Stack
This section gives an overview of the respective technologie stacks for client-
side rendering and server-side rendering and how representative technologies
to use were chosen for this study.
To talk about the different technologies and their popularity, first the concep-
tual differences between the two paradigms must be pointed out. Figure 2.4
shows that the styling, markup language, server-side language (and frame-
work) and database system are equivalent for both of the paradigms.
The client-side rendering specific parts in the technology stack are: a client-
side language (and framework) and an API, implemented in the server-side
language.Technology stack

 7

Database

Server-side language

Markup Language

Style

Client-side language

API

Database

Server-side language

Style

Markup Language

Server

Client

!

"

Server-side rendering Client-side rendering

Client
"

Server

!

Figure 2.4: Technology stacks for client-side rendering and
server-side rendering.

To have representative results in this research, the popularity of each tech-
nology in the stack is taken into account, and the most popular technologies
were used:

1. Style & markup Language
Styling and markup is not affected by the choice of paradigm. There is
also no choice possible, since HTML & CSS are the de facto standards.

2. Database
Database system used is not affected by the choice of paradigm. Since

2.3 Overview of Technology Stack 22

the majority of website use a relational database,MySQL12 and SQLite13

are used in this research [36].

3. Client-side language & framework
The front-end language on the web is de facto Javascript, there is no
choice. There are however numerous frameworks that do client-side
rendering. By investigating React, Angular and Vue in this study, the
majority (> 60%) of front-end frameworks (doing actual rendering) are
analysed [81] [88] [14].

4. Server-side language & framework
For the server-side language, Go and PHP were considered, but most
of the research was conducted using PHP. Both Wordpress and Lar-
avel were considered as back-end frameworks, to make the study as
representative as possible: PHP is used on more than 80% of server-
side scripted websites, and more than 80% of those PHP websites use
Wordpress or Laravel [89] [13] [15].

5. API
The choice of server-side framework has it consequences for the used
API: Wordpress comes with a REST API by default, so in this research
GraphQL and SOAP are not considered. REST is currently also the
most popular API technology [83].

Conclusion 2.3.1
The used technologies in this research are representative for the real world.

12https://www.mysql.com
13https://www.sqlite.org/index.html

https://www.mysql.com
https://www.sqlite.org/index.html

CHAPTER3
Software Quality Attributes

Before comparing client-side rendering with server-side rendering, the do-
main must be established. A good choice of attributes/criteria to do the
comparison must be made.

General literature gives a good view on the existing software quality at-
tributes [25] [74] [56] [70]. But this doesn’t specifically gives a list of at-
tributes which are important and relevant for web development, a subset of
web development related attributes is thus needed.
That’s why literature was consulted to know which quality attributes are to
be considered in the context of web development, i.e. the criteria for this
research.
Based on this literature, the attributes to consider were selected [64] [60] [59]
[63] [65] [32] [97] [50] [68]. Various academic literature, like Nabil, Mosad and
Hefny, derived the quality attributes for web development from the ISO9126
standard for software engineering product quality [59] [65] [32] [97] [50]. To-
gether with this literature based on ISO9126, other literature was used to
narrow down the relevant software quality attributes and make an actual
selection for this research [64] [60] [63] [68].

3.1 Quality Attributes 24

3.1 Quality Attributes
3.1.1 Usability & User Experience

Although usability and user experience are tightly coupled together, they
are not the same: Usability is about the task effectiveness, i.e. doing things
intuitively and easily. It defines how well the requirements are met [17] [5].
User experience, on the other hand, is what a user feels when interacting
with the product, i.e. the emotional connection to the task. [17] [5]

The most obvious consequence when choosing between server-side and client-
side rendering is the user experience. Client-side rendering allows rich in-
teractions by the user [34]. It allows not only entry and exit animations for
static elements, but also makes it possible for users to fetch new dynamic
content on a webpage without having to wait for a complete new page load.
It allows also for a more usable way to submit forms or other data. Ad-
ditionally, client-side rendering enables lazy-loading of content and images.
[34] [45]. Client-side rendering furthermore makes it possible to show loading
animations to the user [45].

Server-side rendering, on the other hand, also has its advantages when talking
about user experience [31] [45] [94]. When using client-side rendering, the
client needs to wait on the download of the Javascript front-end app before
downloading and rendering the content. When using server-side rendering,
on the other hand, a fully rendered page is sent to the client, which yields
a faster initial load time. So this yields a better user experience on the first
load [91].
This slow initial load time for client-side rendering can be overcome by ren-
dering the initial page loads on the server [20] [43].

In general there is a clear consensus that client-side rendering yields a better
usability and user experience [34] [45] [92] [86] (Also see the conducted survey
Section 3.2). That’s why this quality attributes is not further investigated
in this research.

3.1.2 Performance
One of the most quantifiable metrics is the performance. Performance de-
notes how responsive and stable a system is under a certain load, i.e. to
execute any request within a given time limit [56]. It can be measured in
terms of response time, resource utilisation, throughput, and efficiency [74].
Performance can be measured on test cases, or estimated by profiling the
actual project.
There are two point of views that need to be taken into account when talking
about performance: performance at the client and performance at the server.
More importantly, for the client initial and subsequent load times and for
the server throughput and bandwidth.

3.1 Quality Attributes 25

Pa
ge

 a
ba

nd
on

m
en

t

25%

50%

Page load time (s)

0 2 4 6 8 10

Figure 3.1: Page abandonment rate in relation to initial
load time [22].

Client
Based on Figure 2.2 and Figure 2.1, one can compare the requests made in
both paradigms. This comparison can be based on the network waterfall.
This waterfall shows when a request starts loading, and how long it takes
to load. So it shows which requests depend on which other requests. An
example of what such a network waterfall looks like in the development
tools of the web browser can be found in Appendix Figure 8.20.

Client: initial page load time.
The first client metric to look into is the initial page load time.
In case of server-side rendering everything is obviously handled on the server,
from the database interactions to rendering the HTML content. Client-side
rendering, on the other hand, requires that first the front-end Javascript code
is downloaded and executed by the client, after which a request is made to
the server. Finally the returned data by the server must then be rendered
by the client. This means that more roundtrips have to be made, which of
course increases the initial page load [91] [45] [95].
The initial load times are important because people tend to leave sites that
load slowly: this is called the page abandonment rate [62]. If a webpage
does not load within 2 seconds, 10% of the visitors will abandon the page
(Figure 3.1), resulting in missed sales [75] [29] [21] [85].

Client: subsequent page load time.
Not only the initial page load is important, but also the load times of all
the consecutive user interactions. Subsequent page loads can be faster on
client-side rendering, since less data has to be transmitted [95].

3.1 Quality Attributes 26

Websites with shorter average session load times have a higher conversion
rate [18] [80]. The conversion rate denotes the number of visitors who are
actually paying customers.
It can be generalized as: Conversion rate = Number of goal achievements

Number of visitors .
Stadnik et. al. state that the conversion rate quickly drops if the page load
times increase [80]. So it is clearly relevant to look a bit deeper in those load
times.
When using server-side rendering, the complete new HTML page is fetched
from the server and rendered at the client. While with client-side rendering,
only the part that changes is requested, and encoded in say JSON. Thus,
client-side rendering has the following consequences for a next page load: less
work to be done by the server, less bytes to be transferred, and only small
part of rendered page needs to be refreshed, yet the browser must actually
render it.

Server
Server: throughput
Similar to the performance measures from the perspective of the client, the
performance measures from the perspective of the server are also equally rel-
evant. A first important performance measure is the throughput — number
of requests handled per second by the server. The goal is to serve as many
clients as possible with as few resources as possible.
In case of server-side rendering, for each request the page must be rendered
contrary to client-side rendering where only the data is serialised. If the
server must only return a serialised data object (client-side rendering) and
not a fully rendered HTML page (server-side rendering), the throughput
(requests per second handled by the server) can increase [77] So one can
assume that client-side rendering will yield a higher throughput.

Server: bandwidth
The differences between client-side rendering and server-side rendering in
terms of used bandwidth can be found in the size of the content based re-
quests. Of course there is always the overhead of assets like images and
movies, but encoding text by rendering the data in a complete HTML page
is completely different than using a more compact representation like JSON
or GraphQL serialised object.
Client-side rendering requests to APIs are smaller in terms of bandwidth
compared to server-side rendered HTML files [77].

3.1 Quality Attributes 27

Consider for instance the following HTML snippet:

1 <div class="post ">
2 <h1>Hel lo world !</h1>
3 <div class="meta">
4 John Doe
5 21/02/2018
6 </div>
7 <div class=" content ">
8 Donec u l lamcorper nu l l a non metus auctor .
9 </div>

10 </div>

The very same data, encoded in JSON, is comparatively smaller:

1 {
2 " post " : {
3 " t i t l e " : " He l lo world ! " ,
4 " author " : "John Doe" ,
5 "date " : 1519223545 ,
6 " content " : "Donec u l lamcorper nu l l a non metus auctor . "
7 }
8 }

The performance metrics are investigated in both the pilot study (Chapter 4)
and the case study (Chapter 5).

3.1.3 Development Effort
The complexity of client-side rendered apps is argued to be higher than
server-side rendered [26] [4]. In single page applications the client needs
to fetch data from the server. This means that effort should be put into
creating a complete and secure API, and the communication with that API:
serialising at the server, unserialising at the client, or taking care of network
delay or connection loss, ...
There is also the problem of duplicates: models not only exist at the server
side, but when more complex operations with those models are needed, they
also need to be implemented at the client side. Often the language used at
the client differs from the one at the server. This yields duplicate code [84].

Building a front-end web app also means that not only the build environment
at the server must be configured and maintained, but that effort must now
also be put into maintaining a build environment for the client-side code.

Development effort is investigated in both the pilot study (Chapter 4) and
the case study (Chapter 5).

3.1 Quality Attributes 28

3.1.4 Maintainability
Maintainability denotes how easy it is to make changes to the existing system
[56]. Also taking into account the ease of updating the tests to these changes
[74].
An example in this comparison: client-side rendering involves a more dif-
ferentiated setup and more interactions, it is is obviously more difficult to
maintain all these [12].

Maintainability is not something that can be easily studied by looking at
source code [44]. It is to be studied a posteriori, i.e. based on historical data
that is gathered [33]. This makes it useless to look at maintainability in this
research, since it cannot be covered in the pilot study and case study that
was performed.

3.1.5 Scalability
Scalability is the ability of the system to handle an increased load [56]. A
system is scalable if it can gracefully handle an increased usage/load [70].
When using client-side rendering, only the data has to come from the server
running the API. The actual Javascript code and assets can be hosted on
CDNs (content delivery networks), which can scale horizontally very well
[34] [20].

Scalability is investigated in the case study (Chapter 5).

3.1.6 Compatibility
Browser Support
Server-side rendering is argued to yield higher compatibility [91]. Since the
browser has less work to do, and more responsibilities are delegated to the
server, server-side rendering offers higher compatibility with different clients
and browsers [45]. Although most people use modern browsers, there is still
a portion of users on older or less standardised browsers that do not fully
support modern techniques used in the most popular front-end frameworks
1 2.

Browser compatibility all depends on the used Javascript frameworks and
the actual browsers of the website visitors. So this is something that is not
relevant for this study, but that each organisation can easily check for them-
self by looking at website statistics and at the requirements of the framework
they want to use.

Search Engine Optimisation
Search Engine Optimisation is important for most websites. Depending on
the complexity of the crawler visiting your website, client-side rendering

1https://angular.io/guide/browser-support
2https://reactjs.org/docs/react-dom.html#browser-support

https://angular.io/guide/browser-support
https://reactjs.org/docs/react-dom.html#browser-support

3.1 Quality Attributes 29

could have a bad impact on your Search Engine Optimisation. For instance,
some crawler do not execute the Javascript code on your website, thus it does
not get the content and is not able to crawl any interesting data. Recently,
the crawlers have evolved and most of them execute Javascript code now,
meaning that they support client-side rendering [35]. Google, for instance,
was the first to fully support client-side rendering in their crawlers [61] [58]
[95]:

Times have changed. Today, as long as you’re not blocking Google-
bot from crawling your JavaScript or CSS files, we are gener-
ally able to render and understand your web pages like modern
browsers.

Unfortunately, this is not the case for all crawlers. Baidu for instance, the
largest search engine in China, does not support client-side rendering yet
[47].
So if Search Engine Optimisation really matters, one should also render the
pages on the server if the website is accessed by a crawler [91].

Because compatibility is hard to measure without real content and real users,
it is left out from this research.

3.1.7 Security
Measuring security on source code is impossible. Security can only be mea-
sured on an actual organisation and actual security breaches [48] [1]. So this
is again a quality attribute that’s not relevant in this research.

3.1.8 Reliability & Availability
Reliability and availability describe whether the web site is available for
users, and whether it behaves correctly [63]. Investigating this involves the
user and an actual running system. Thus, once more, this quality attribute
cannot be researched in this study.
The availability of the two systems is however shortly discussed in the case
study (Chapter 5). When abstracting the user away and calculating it with
an uptime monitoring tool, it can be measured.

3.2 Opinion of Developers on Quality Attributes 30

3.2 Opinion of Developers on Quality Attributes
To get the first insights on the software quality attributes a survey was
conducted. The goal of this survey is to reach out to professional developers
and ask them for which quality factors they prefer over a rendering paradigm
and to ask them which factors are most important in the decision of choosing
between the two rendering paradigms.
Thus, it allows to learn about developers’ perceptions about the client-side
rendering and server-side rendering paradigms.

The survey was distributed on various social media (Facebook, Twitter, Red-
dit), mostly in web development related communities or via influencers in
web development. In total 63 respondents filled in the complete survey.

3.2.1 Survey Questions
Demographic Related Questions
To get some insight in the profile of the people filling the survey, demo-
graphic related questions were added to the survey. To do so, existing de-
veloper oriented surveys were studied. One of the most important surveys
about software engineering — performed each year — is the Stack Overflow
Developer Survey3. This survey contains a lot of interesting demographic
questions. The demographic questions in this survey (Table 3.1) are thus
extracted from the Stack Overflow Developer Survey.

Question
A Age
B Occupation
C Gender
D Highest Education
E Experience in Software Development
F Years Since Learning to Code
G Years of Professional Coding Experience
H Company Size

Table 3.1: List of demographic related questions in the sur-
vey.

Software Engineering Related Questions
To better understand which quality attributes depend on which metrics,
dependencies were looked up in literature and used to compose the survey
questions. The following dependencies were extracted from literature:

1. Testability depends on Modifiability and Flexibility [2].

2. Code Quality depends on Number of Defects, Maintainability, Porta-
bility, Efficiency, Usability, Functionality, Testability [41] [25].

3https://insights.stackoverflow.com/survey/2018/

https://insights.stackoverflow.com/survey/2018/

3.2 Opinion of Developers on Quality Attributes 31

3. Extensibility depends on Modifiability, Maintainability, Scalability
[39].

These dependencies and other interesting quality attributes combined yield
the following list of individual metrics to ask questions about in the survey:

1. Modifiability

2. Flexibility

3. Number of Defects

4. Efficiency

5. Usability

6. Testability

7. Extensibility

8. Modifiability

9. Maintainability

10. Scalability

11. Development effort

12. Duplicates

13. SEO

14. Performance

The list of composed questions based on these metrics can be found in Ta-
ble 3.2. For most of the questions the respondents could chose between:

1. "Client-side rendering"

2. "Server-side rendering"

3. "There is no noticeable difference"

4. "I don’t know"

A complete list of questions with all the answers can be found in the appendix
(page 77).

3.2 Opinion of Developers on Quality Attributes 32

Question
1 Do you have experience with client-side rendering frameworks / single page

application frameworks (like Angular, React, Vue, ...)?
2 What’s your preference? Server-side rendering or client-side rendering?
3 Which of the following metrics influence your choice between server-side

rendering and client-side rendering the most?
4 Which paradigm is most testable?
5 Which paradigm is more modifiable?
6 Which paradigm is more flexible?
7 Which paradigm requires most development effort?

8 Which paradigm yields most duplicate code?

9 Which one of the paradigms yields more code defects/bugs?

10 Which paradigm yields more maintainable code?

11 Which paradigm yields more efficient code?

12 Which paradigm yields better usability?
13 Which paradigm results in best extendability?
14 Which paradigm scales best?
15 Do you think the impact of client-side rendering on SEO is still noticeable anno

2018?
16 Did you notice impact on server load using one of the paradigms?

Table 3.2: List of software engineering related questions in
the survey.

3.2 Opinion of Developers on Quality Attributes 33

3.2.2 Results from Survey
In this section, the results are presented, first starting with the demographics
of the respondents. Then, the answers on the atomic questions are analysed.
Lastly, the dependencies between metrics are examined.

Demographics
For the results of the survey to make sense, the survey should be filled in
by people who have expertise. This is why a first look into results was to
confirm whether enough web development experts had filled in the survey.
In total, 63 respondents filled in the complete survey. The following con-
clusions were drawn about these respondents: The vast majority (83%) of
the respondents are professional developers (Appendix Figure 8.1), which
have finished higher education (Appendix Figure 8.2) and have at least a
couple years of experience in software development (Appendix Figure 8.3).
81% of respondents state that they have experience with modern front-end
frameworks (Appendix Figure 8.4).

In summary, the respondents in the survey are representative and have the
required expertise to provide useful insights about the topic.

Quality Attributes
Looking at the software quality attributes that were in the survey, there is a
first pattern that catches the eye: there is always a part of respondents that
feel there is no noticeable difference (grey in the pie charts). But then again,
in most survey questions there is also a clear preference in the developers
choice.

Next step consists of looking into the individual software quality attributes
asked in the survey. From interpreting these response, the following major
observations become apparent:

1. Most developers prefer client-side rendering. Appendix Figure 8.5
shows that 44% prefer client-side rendering, compared to 27% pre-
ferring server-side rendering.

2. There seems no single software quality attributes that influences the
developers in the sample to prefer client-side rendering or server-side
rendering. Yet, the development effort and performance do matter
more to 18% and 21% developers respectively in their choice to prefer
certain rendering technology, compared to around 10% to 14% for the
other factors. (Appendix Figure 8.6).

3. However, around two times as much developers think that client-side
rendering is more modifiable (Appendix Figure 8.8), flexibele (Ap-
pendix Figure 8.9), extendable (Appendix Figure 8.16) and scalable
(Appendix Figure 8.17) compared to server-side rendering.

3.3 Conclusion 34

4. The above advantage of client-side rendering are apparently opposed
— again more than two times as much developers prefer one over an-
other — to client-side rendering requiring more development effort (Ap-
pendix Figure 8.10) and, client-side rendering yielding more duplicate
code (Appendix Figure 8.11) and more code defects (Appendix Fig-
ure 8.12). Client-side rendering also still has its drawbacks regarding
SEO (search engine optimisation) (Appendix Figure 8.18).

5. The maintainability (Appendix Figure 8.13) and efficiency (Appendix
Figure 8.14) of the code do not seem to be clearly favoured. An-
swers from the developers are almost evenly divided between the two
paradigms.

6. Usability on the other hand is clearly better for client-side rendering:
50% vs 22% of developers prefer client-side rendering over server-side
rendering for usability (Appendix Figure 8.15).

7. Most developers (44% vs 16%) think server-side rendering is most
testable (Appendix Figure 8.7)

8. Server-side rendering can yield a higher server load (Appendix Fig-
ure 8.19).

3.3 Conclusion
The first part of this chapter discussed the various software quality attributes
and made a selection of attributes that need to be investigated in this re-
search.

The survey shows that developers perceive differences. But these differences
are not always well pronounced. So there is a need to do research the selected
quality attributes in more detail. This is done in the pilot study (Chapter 4)
and the case study (Chapter 5).

Conclusion 3.3.1
The following software quality attributes will be investigated in this re-
search:

1. Performance (page loads, throughput and bandwidth)

2. Development Effort

3. Scalability

4. Availability

CHAPTER4
Pilot Study

In this chapter a pilot study is performed on quality attributes.
The goal of this experiment is to get a first quantifiable comparison between
client-side rendering and server-side rendering. This is done by creating two
versions of the same simple web application (one with client-side rendering
and one with server-side rendering) and perform analysis and benchmarks
on them. This web application consists of a rudimental CMS (content man-
agement system) front-end: i.e. browsing pages and pagination.
Such empirical pilot study is the most controlled way to analyse the quantifi-
able metrics [53]. By doing the empirical pilot study on two completely iden-
tical web applications, other factors — besides the used rendering paradigm
— are excluded.

4.1 Methodology
4.1.1 Web application

To do a meaningful comparison, a web application had to be implemented.
This web application must not only represent the functionalities of a real
world website but must also represent the technologies used by real develop-
ers.
The web application written for this research is a simple implementation of
content management system. It contains simple pages which can be read-
/browsed like on a real-world website.
Instead of writing it twice (client-side rendered version and a server-side ren-
dered version), it was written four times: two equivalent projects. One client-
side and server-side rendered version written in Go, and another client-side

4.1 Methodology 36

and server-side rendered written in PHP/Laravel. Vue1 was used as front-
end framework for the two versions. Although Vue only respresents one of
the front-end frameworks, the specific relevant differences between frame-
works for this study are minimal [82]. The other most relevant frameworks,
Angular and React are used in the case study (described in Chapter 5).
The server-side rendered versions use the built-in templating libraries of
the languages. The client-side rendered versions consume the REST API
exposed by the back-end, again written in the respective languages.
In this pilot study the Go implementation represents the more modern ap-
proach, were large frameworks are replaced with smaller packages [87].
The PHP/Laravel implementation represents mainstream web development.
PHP is still the most used programming language on the web, and Laravel
the most popular framework for PHP [16] [73].

I Source Code

The source code of the CMS can be found on Bitbucket:

Go implementation:
https://bitbucket.org/MathiasB/thesis-cms-go

Laravel implementation:
https://bitbucket.org/MathiasB/thesis-cms-laravel

4.1.2 Measurement tools
The measurements done in the browser were performed using the browser’s
network inspection tools2. They were performed on the test CMS that was
written.

The benchmarking of the server throughput and bandwidth is done with
ApacheBench3.

I Apache Bench

Apache Bench is part of the apache2-utils packages (or Apache itself).
These can be installed on Ubuntu as follows:
$ apt-get install apache2-utils

On Mac, Apache and Apache Bench are installed by default.

Apache Bench can then be invoked as follows:
ab -n 1000 -c 100 http://hostname:port/

1https://vuejs.org
2https://developers.google.com/web/tools/chrome-devtools/
3https://httpd.apache.org/docs/2.4/programs/ab.html

https://bitbucket.org/MathiasB/thesis-cms-go
https://bitbucket.org/MathiasB/thesis-cms-laravel
https://vuejs.org
https://developers.google.com/web/tools/chrome-devtools/
https://httpd.apache.org/docs/2.4/programs/ab.html

4.2 Results 37

Where n is the number of requests (1000 was used in this study) and c
is the number of concurrent connections.

4.2 Results
4.2.1 Client: initial page load time

If the network waterfall for both client-side rendering and server-side render-
ing for the same page are compared, it quickly becomes clear that client-side
rendering incurs slower first page load time. Analysing the waterfall shows
that the initial page load times of a website are dependent on a couple of
factors including latency, number of requests, size of the requests, etc. Using
a Javascript framework for client-side rendering can for example yield more
blocking requests to be made before the content can be rendered, which
takes more initial load time. However, not all of these depending factors can
easily be improved. For instance, the latency to the client is fixed and the
rendering paradigm cannot influence this. Yet, the number of requests and
the size of these requests can be controlled.
Comparing Figure 4.1 and Figure 4.2, it is apparent that when using client-
side rendering, the initial page load is slower. This is because after loading
the index file, the complete front-end framework must be loaded followed by
a request to the API to fetch the actual data. Once this data is fetched, the
actual page is rendered. Contrarily, using server-side rendering, only some
static assets need to be loaded after the index file before the page is rendered.

index.php
style.css
script.js

...

0ms 750ms 1500ms 2250ms 3000ms

Figure 4.1: Network waterfall of server-side rendering for
initial page load.

4.2 Results 38

index.php
style.css

app.js
...

/api/post/1

0ms 750ms 1500ms 2250ms 3000ms

Figure 4.2: Network waterfall of client-side rendering for
initial page load.

Looking into the network waterfalls it becomes clear that some requests
depend on each other, blocking the actual rendering of the content until
that chain of blocking requests is resolved.

4.2.2 Client: subsequent page load time
Figure 4.3 shows that, in case of server-side rendering, the complete index
page is requested again, and all the assets are reloaded (from the browser
cache, hence the very short times). To the contrary, for the client-side ren-
dering (Figure 4.4) only the data from the API is fetched and nothing else.

index.php
style.css
script.js

...

0ms 250ms 500ms 750ms 1000ms

Figure 4.3: Network waterfall of server-side rendering for
next page load.

index.php
style.css

app.js
...

/api/post/2

0ms 250ms 500ms 750ms 1000ms

Figure 4.4: Network waterfall of client-side rendering for
next page load.

4.2 Results 39

In this test case for a small application the difference in time is insignificant
and may not likely affect the conversion rate though.

4.2.3 Server: throughput
Comparing the throughput of calls to a templated code (representing server-
side rendering) with calls to the a REST API (representing client-side ren-
dering) on the Go project supports this assumption. Figure 4.5 shows that
using client-side rendering (i.e. the API calls) yields an increase in through-
put of almost 100%.

Th
ro

ug
hp

ut

0

750

1500

2250

3000

Number of concurrent requests used for benchmark

1 10 100 500

Client-side rendering Server-side rendering

Figure 4.5: Throughput in Go project: API call compared
to rendered page.

Performing the same experiment on the Laravel project, however, doesn’t
give the same enormous differences as the Go project (Figure 4.6). Client-
side rendering shows in the Laravel project only a very small increase in
throughput in most cases. For a very high amount of concurrent connections
server-side rendering even scored better.

4.2 Results 40

Th
ro

ug
hp

ut

0

25

50

75

100

Number of concurrent requests used for benchmark

1 10 100 500

Client-side rendering Server-side rendering

Figure 4.6: Throughput in PHP/Laravel project: API call
compared to rendered page.

So there is a clear need for more benchmarks on existing projects. This is
doen in the case study chapter (Chapter 5).

4.2.4 Server: bandwidth
After the throughput, the consumed bandwidth was measured. For the Go
web app, Figure 4.7 shows that 90% less bandwidth is used when using
client-side rendering instead of server-side rendering.

By
te

s

0

750

1500

2250

3000

2328

248

JSON API Rendered theme

Figure 4.7: Bandwidth used by Go project: API call com-
pared to rendered page.

4.2 Results 41

4.2.5 Development Effort
When looking at the lines of code (LOC) of the two equivalent test web apps
(Figure 4.8), it is clear that for this experiment more development effort was
needed. Looking at the actual time it took to write these two test web apps
(Figure 4.9), yields the same pattern.
So for this experiment, the needed development effort for client-side render-
ing is more than double the needed effort for server-side rendering.

LO
C

0

15

30

45

60

Client-side Rendering Server-side Rendering

Figure 4.8: LOC (lines of code) for the same test web app.

M
in

ut
es

0

22,5

45

67,5

90

Client-side Rendering Server-side Rendering

Figure 4.9: Time spent on writing the two test web apps.

LOC is argued to be not the most interesting metric to use for estimation
[19] and thus generalisation doesn’t make much sense.
Yet, the LOC provides a first quantifiable and tangible metric for develop-
ment effort.

4.3 Conclusion 42

4.3 Conclusion
In this pilot study, the first tangible results were found. There results not
only showed the first differences, but also showed that more comparison is
needed.

Conclusion 4.3.1
The following preliminary results were found:

1. Client-side rendering yields slower initial page load.

2. Client-side rendering yields faster next page load.

3. Client-side rendering yields an increased server throughput.

4. Client-side rendering yields less server bandwidth consumption.

5. Client-side rendering yields higher development effort.

Conclusion 4.3.2
Research on real web applications is needed.

That is why in the next chapter open source projects were investigated, like
Wordpress, since it is a complete content management system and the most
popular on the entire internet [13]

CHAPTER5
Case Study on Existing

Projects

5.1 Motivation
To get better insights in metrics in real-world situations, sticking with a
single small empirical experiment is not sufficient. More data is needed,
and therefore a case study was performed on existing real-world Github1

repositories.
A case study is the ideal investigation to look into the impact of a given
paradigm where it is isolated from other factors [53] in existing projects.
There is of course a need for existing projects for the investigation to make
sense, this is where Github comes in to play. Github is a platform where
people host their git repositories. Those repositories not only contain the
versioned source code, but also all reported bug reports (called Issues on
Github). Github also allows users to Star (i.e. liking a repository) and Fork
(i.e. creating a new user copy of a repository in which they can make their
own changes) repositories. So Github is a very rich data source on software
development [40].

Github repositories are existing projects, implementing solutions for real-
world problems by real developers and are used by real people. This makes
them perfect to research software quality as perceived by the multiple stake-
holders.

1https://github.com

https://github.com

5.2 Methodology 44

5.2 Methodology
5.2.1 Selecting Repositories

Analysing the impact of both client-side rendering and server-side rendering
can only be successful when identical projects can be found, where the only
difference resides in whether they are rendered on the client or the server. So
pairs of projects with exactly the same features and popularity are needed.
Collecting such pairs of repositories was done by searching on client-side ren-
dering technologies using Github search. These technologies include among
others: Vue, Angular, React, Ember.
As result, each of these terms (and more) yields an enormous list of reposito-
ries. So for each repository in that list the project size, features, popularity,
and technologies were taken into account. This is done by looking into the
documentation, websites, and source code of each candidate.

Once a good — actively maintained with reasonable features and popularity
— client-side rendered repository was found, an alternative was searched
with the same features/size, but implemented with server-side rendering
technology. This is done by doing a Github search on the features/topic of
the found client-side rendered results. Again, for each of the resulting repos-
itories of that search, they were manually checked if they truly matched with
the client-side rendered counterpart.

Then, for each repository the metadata was extracted by means of accessing
Github’s API and by cloning the git repositories to be able to compare them.

5.2.2 Analysis
Performance
The performance benchmarks were ran using the same tools used in the pilot
study. But this time they were ran on the found projects, more specifically on
Wordpress. Server-side rendering is tested by simply invoking the Wordpress
index, which uses the theme. Client-side rendering is tested by accessing the
Wordpress REST API.

Scalability
Besides performance, horizontal scalability is also important to measure.
It goes one step further by not looking at the throughput, but looking at
how the throughput increases when it is distributed over more servers. To
look at scalability, the waterfalls for client-side rendering and server-side
rendering were implemented so they could be replayed to mimic meaningful
load. This was implemented using Go (since it offers useful mechanisms for
concurrency). Then the waterfalls were first replayed on a single server as
host for the application. Next, another server was added — on which the
assets were hosted — and the waterfalls replayed again to see if this increased
the throughput on the server.

5.3 Analysed Repositories and Their Characteristics 45

I Source Code

The source code of the written benchmarking tool can be found on Bit-
bucket:
https://bitbucket.org/MathiasB/thesis-benchmark-tool

Development Effort
Development time cannot be calculated post factum, so only LOC is used
to compare the projects. Since LOC is used as a measure, the programming
language expressiveness should be taken into account while analysing [24].

Availability
Lastly, a monitoring was ran for one week on two equivalent Wordpress se-
tups. To do so, a scenario of a visitor browsing the website was implemented
in a front-end testing framework — Cypress2 was used here — and executed
each 10 minutes.

I Source Code

The source code of the written front-end tests can be found on Bitbucket:
https://bitbucket.org/MathiasB/thesis-frontend-tests

5.3 Analysed Repositories and Their Characteristics
Finding the matching pairs of repositories to analyse proved to be very hard
task (and close to impossible): it is a time-consuming task, and there seemed
only few equivalents on all (or even the majority) of factors.
A thorough search through Github yielded three interesting pairs of reposito-
ries. See Table 5.1 and Table 5.2 showing a list of client-side rendered reposi-
tories and server-side rendered repositories respectively, with their name and
type, as well as the metadata extracted from them. Each n-th item in the
first table forms a pair with the n-th item in the second table.

Client-side Rendered Repositories Stars Forks Issues LOC

Angular-Wordpress-Theme Wordpress Theme 389 124 25 852

Foxhound Wordpress Theme 283 32 72 14072

Buka Book management software 383 53 25 101772

Table 5.1: Selected client-side rendered repositories

2https://www.cypress.io

https://bitbucket.org/MathiasB/thesis-benchmark-tool
https://bitbucket.org/MathiasB/thesis-frontend-tests
https://www.cypress.io

5.3 Analysed Repositories and Their Characteristics 46

Server-side Rendered Repositories Stars Forks Issues LOC

theme Wordpress Theme 749 77 54 1095

casper Wordpress Theme 473 105 111 13329

cops Book management software 686 148 300 28837

Table 5.2: Selected server-side rendered repositories

Although Table 5.1 and Table 5.2 show the best matched pairs found, how-
ever the comparison of the repositories shows that there are minor differences
in the projects. Those should be taken into account when comparing them:

The main features of the projects are quite similar (especially for the Word-
press themes). But still some projects are bigger than others. This is another
problem, because larger project have of course more chance of having bugs,
lines of code, more code to be executed — and thus possibly lower through-
put, ... [96].

Client-side rendered projects also tend to have more Javascript code, whereas
Server-side rendered projects tend to have more PHP code. If the lines of
code needed to express the same feature is larger for a given programming
language, it should be taken into account when comparing the LOC. There-
fore, the difference in expressiveness for Javascript and PHP were compared
by counting the the LOC (using CLOC3) for numerous code snippets per-
forming exactly the same task. Comparing these LOC counts clearly show
that in this case there is no significant difference in expressiveness that should
be taken into account. See Figure 5.1.

LOC

0 1300 2600 3900 5200

Javascript PHP

Figure 5.1: LOC compared for exactly the same tasks, writ-
ten in both Javascript and PHP.

The client-side rendered Wordpress themes use the built-in Wordpress REST
API. So the LOC for the API part is not taken into account when just
counting the lines in the repositories. That’s why — when researching them

3https://github.com/AlDanial/cloc

https://github.com/AlDanial/cloc

5.4 Results 47

on the LOC — the LOC of the Wordpress REST API should be added to
them. The LOC of the logic of the Wordpress REST API equals 71404.

5.4 Results
5.4.1 Client: initial page load time & subsequent page load time

The load waterfalls observed in this case study (Appendix Figure 8.20, Fig-
ure 8.21, Figure 8.22, Figure 8.23) completely matched the waterfalls from
the test projects in the pilot study. See Figure 4.1 and Figure 4.2. So the
results from the pilot study also hold in this case study:

1. The initial page load is faster when using server-side rendering.

2. Subsequent page loads are a little bit faster when using client-side ren-
dering, when using browser caching. However, if no caching is used,
there is a noticeable difference: 160ms for client-side rendering com-
pared to 600ms for server-side rendering.

5.4.2 Server: throughput
As already done on the test projects in the pilot study, the server throughput
was measured. Figure 5.2 shows that for Wordpress projects, client-side
rendering yields a higher throughput than server-side rendering.

Th
ro

ug
hp

ut

0

100

200

300

400

Number of concurrent requests used for benchmark

1 10 100 500

Client-side rendering Server-side rendering

Figure 5.2: Throughput in Wordpress: API call compared
to rendered theme.

5.4.3 Server: bandwidth
Comparing the server bandwidth for the Wordpress themes yields again the
same results as for the Go and Laravel test projects: client-side rendering

4https://github.com/WordPress/WordPress/tree/master/wp-includes/rest-api

https://github.com/WordPress/WordPress/tree/master/wp-includes/rest-api

5.4 Results 48

transmits a lot less data for the same request. For this test setup 50% less
data was used when using client-side rendering. See Figure 5.3.

KB
yt

es

0

25

50

75

100

JSON API Rendered theme

Figure 5.3: Bandwidth used by Wordpress: API call com-
pared to rendered page.

However, looking at the raw requests is not enough. For real-world websites
it is considered best practice to compress the server responses with Gzip
[79]. So the bandwidth was also compared after Gzipping. Figure 5.4 shows
that indeed, when using Gzip, 30% less data is transmitted. But even after
Gzipping client-side rendering still uses 33% less bandwidth.

KB
yt

es

0

25

50

75

100

JSON API Rendered theme

Figure 5.4: Bandwidth used by Wordpress when using Gzip
compression: API call compared to rendered page.

5.4.4 Scalability
To look how the throughput increases when the load is distributed over an
additional server, the scalability is studied. This was firstly done by solely
looking at the rendering, not considering static assets. Figure 5.5 shows that

5.4 Results 49

— when only taking rendering itself into account — server-side rendering
cannot scale over an extra server, whereas client-side rendering can. So,
even if the difference is not large, client-side rendering scales better than
server server-side rendering.

0

85

170

255

340

Non-scaled Scaled

Client-side rendering Server-side rendering

Th
ro

ug
hp

ut

Figure 5.5: Scalability of Wordpress without loading other
assets.

But of course, fetching some assets — corresponding to the waterfalls de-
scribed earlier in the pilot study (Figure 4.1 and Figure 4.2) — represents
the load of real websites more. When also putting the assets on the second
server, it is observed that server-side rendering has a small improvement in
throughput and client-side rendering — although small — a larger increase
in throughput. See Figure 5.5.

5.4 Results 50

0

43

85

128

170

Non-scaled Scaled

Client-side rendering Server-side rendering

Th
ro

ug
hp

ut

Figure 5.6: Scalability of Wordpress when loading other
assets.

These scalability results are what can be expected. Because previously Fig-
ure 5.2 showed that only 16% of time is spent on rendering, the upper-bound
on speedup factor when scaling on more servers cannot be higher than 1.18,
following Amdahl’s Law. Amdahl defined the upper-bound of the speedup,
caused by parallelism as follows: S ≤ 1

1−p , where S is the speedup and p is
the portion of code that can be parallelised [93].

5.4.5 Development Effort
The development effort in this case study is only considered in terms of LOC.
As pointed out before, the LOC of the Wordpress REST API were added
to the measured LOC of the client-side rendered Wordpress themes to make
the comparison meaningful. This yields the LOC in Figure 5.7, conforming
to the results of the pilot study were implementing the client-side rendered
version required more development effort.

5.5 Conclusion 51

KL
O

C

0

30

60

90

120

Angular-Wordpress-Theme
theme

Foxhound
casper

Buka
cops

Client-side rendering Server-side rendering

Figure 5.7: KLOC (thousands of lines of code) for each of
the Github projects.

5.4.6 Availability
Running the front-end test continuously on the two Wordpress instances (one
for each paradigm), yielded for both instances an uptime of 100%. This can
be expected since the same server software is used and the same type of
servers are used.

5.5 Conclusion
This case study proved the findings of the pilot study (Chapter 4) and added
some new insights.

Conclusion 5.5.1
The following results were found on the open source projects:

1. Client-side rendering yields slower initial page load.

2. Client-side rendering yields faster next page load.

3. Client-side rendering yields an increased server throughput.

4. Client-side rendering scales better than server-side rendering.

5. Client-side rendering yields less server bandwidth consumption.

6. Client-side rendering needs more LOC for the same functionality.

7. There is no difference in availability for this particular test setup.

CHAPTER6
Threats To Validity

In this research 5 out of the 8 different software quality attributes were
compared in both a pilot study with newly written projects, and a case
study with existing projects. Those other 3 attributes were left out because
they couldn’t be measured in the scope of this research.
This makes that the comparative study doesn’t takes into account all relevant
quality attributes. However, they were covered in the survey (Section 3.2),
which gives a small indication of what the outcome would be if those were
to be considered.

Although interesting projects for the case study were found on Github, it
were only 3 interesting pairs of equivalent repositories, covering only a small
part of web application functionalities.

The study being done on the test projects written in Go and Laravel com-
bined with the Wordpress test cases yields a representative study. They
cover the most significant portion of used web software [16] [13]. There are
however other major platforms that were not considered in this study, like
APS.NET, Java, Ruby on Rails, Django, and possible others, but Section 2.3
showed that PHP is the most used [16] [89].

The tests on the client were ran with three major front-end frameworks Vue,
Angular and React [38] [82]. Together they give a good representation of
used front-end frameworks in real world, as seen in Section 2.3.

How the used technologies represent the real world was throughly discussed
in Section 2.3.

CHAPTER7
Conclusions

This research started by introducing the need for a comparative study re-
garding client-side rendering and client-side rendering (Section 1.1). Then
the fast evolving of the web and it’s technologies was considered in Chapter 2.
Chapter 3 first introduces relevant software quality attributes, selected from
literature (Section 3.1). A developer oriented survey was then conducted on
these attributes (Section 3.2).

The pilot study on self-written test projects in Chapter 4 combined with the
case study on existing projects in Chapter 5 made it possible to measure
the quality attributes and to point out the differences between client-side
rendering and server-side rendering.

Conclusion 7.0.1
The proposed software quality attributes could be quantified.

54

Those quantifications made it possible to analyse the differences between
the quality attributes and propose which of the paradigms is to be used to
optimise a certain quality attribute.
This yields the following conclusions:

Conclusion 7.0.2
Client-side rendering is to be preferred when the following quality at-
tributes are important:

1. Performance: server bandwidth

2. Performance: server throughput

3. Performance: next page loads

4. Usability

5. Scalability

Conclusion 7.0.3
Server-side rendering is to be preferred when the following quality at-
tributes are important:

1. Initial page loads

2. Development Effort

3. Search Engine Optimisation

4. Browser Compatibility

55

Based on the gathered results, a decision tree was constructed which helps
developers in making the choice between client-side rendering and server-
side rendering. See Figure 7.1. This decision tree also proposes the hybrid
approach, which consists of serving the first page with server-side rendering
— requiring of course more development effort.

Flow chart with conclusions

 6

Server-side rendering

Are you building a full fledged interactive web app
where usability is important?

Client-side rendering

Is the usability worth the extra
development effort?

Should the initial page load be optimal?

Client-side rendered app, with
server-side rendered first page load

Do SEO or browser compatibility matter

NO

YES

YES

NO

NO

NO

YES

YES

Figure 7.1: Decision tree which aids developers in making
the choice between client-side rendering and server-side ren-
dering.

CHAPTER8
Future Work

Future work consists of generalising the found results.
The performed case study could be enhanced to a larger scale: doing more
studies with different project types would allow for more generalisable re-
sults. It could also allow the theoretical models for the development effort
and usability to be worked out.
To make attributes comparable to other attributes — in order to estimate
the impact of attributes —, the results for the attributes should be denoted
as general as possible. This future work section proposes a way to generalise
quality attributes in terms of money. Money is always something that is
considered and it can — once quantified — be compared between attributes.
That way the impact of the rendering paradigms can be expressed as a sum
of increases and decreases in revenue, yielding a total which aids in making
the choice between the paradigms.

The remainder of this chapter sketches how quality attributes could be gen-
eralised.

Client page load time
Based on the network waterfalls from the pilot study (Figure 4.1 and Fig-
ure 4.2) it becomes clear that some requests depend on each other, blocking
the actual rendering of the content until that chain of blocking requests is
resolved.
The load time Tr of a single blocking requestBR depends on the fixed average
client bandwidth Bc, client average latency Lc, server processing delay Ds,
and the size of the request S(req)BR and response S(res)BR. Thus, the load
time TBR can be computed as in Equation 8.0.1.

57

Equation 8.0.1

TBR = Lc +
S(req)BR

Bc
+Ds +

S(res)BR

Bc

Therefore, to generalise based on the waterfall, the complete load time Tload is
the sum of all consecutive blocking requests in the waterfall (Equation 8.0.2).

Equation 8.0.2

Tload =

n∑
i=1

TBRi

Where n is the number of blocking requests in a rendering session. Using
the above generalisation, the increase or decrease in load times for each in-
dividual project can be estimated.

Since the page abandonment rate is proportional to the load times, and the
generated revenue R is proportional to the page abandonment rate, using
the abandonment rate AR(Tload) for the calculated load time the gain or
loss in revenue can estimated as in Equation 8.0.3.

Equation 8.0.3

R = (1 −AR(Tload)) ∗Average(Rclient) ∗ #visitors

Where Average(Rclient) is the average revenue generated per visitor. And
#visitors is the number of visitors of the website. The difference in revenue
for both paradigms can then be denoted as in Equation 8.0.4.

Equation 8.0.4
∆R = RC −RS

Where RC is the revenue estimated for the client-side rendering paradigm
and RS is revenue estimated for the server-side rendering paradigm.

Client: subsequent page load time
Again since the difference in conversion rate CR(Tload) is proportional to
the consecutive load times and the revenue is proportional to the conversion
rate [78], the change in revenue (reusing the Tload from Equation 8.0.2) is as
in Equation 8.0.5.

Equation 8.0.5

R = CR(Tload) ∗AR(checkout) ∗ #visitors

Where CR(Tload) is the conversion rate for a given load time. This means
that a ∆R can again be calculated as seen in Equation 8.0.4.

58

Server: throughput
The server throughput could also be generalised. For others projects one
could profile the application (assuming there is already a server-side imple-
mentation) and calculate the amount of time spent on rendering. The upper
bound of the gain in throughput δthroughput is then given in Equation 8.0.6.

Equation 8.0.6

δthroughput =
total time

total time− rendering time

Where total time is the total time needed to process a request and rendering
time is time spent on rendering the HTML content for the particular request.
A higher throughput means that less server resources are needed to handle
the same amount of clients. This means that after calculating the upper
bound of the gain in throughput, also the lower bound of optimised server
cost can be calculated (assuming the current server cost ServerCostC needed
for the throughput is known).

Equation 8.0.7

ServerCostC =
ServerCostS
δthroughput

Where ServerCostC is the server costs for client-side rendering, while Server-
CostS is the server costs for server-side rendering.
This can then again be written as a difference in value to compare those
values with other values in the framework:

Equation 8.0.8

∆cost = ServerCostC − ServerCostS

Where ∆cost is the difference in cost and is useful to compare the increase
or decrease in cost by switching between the paradigms.

Server: bandwidth
The server bandwidth could also be generalised:

Equation 8.0.9

δB =
Bserialised

BHTML

Where δB is the gain in bandwidth, because serialising the data (denoted by
Bserialised) generates smaller data size than HTML encoded data (denoted
by BHTML). This can lead to a decrease in bandwidth cost.

59

Given the number of requests #requests handled by the server, the size of
those requests size(request) and server data cost cost(byte), the cost of the
bandwidth cost(B) can be calculated as in Equation 8.0.10.

Equation 8.0.10

cost(B) = #requests ∗ size(request) ∗ cost(byte)

The new cost as a result of the gain in bandwidth for client-side rendering
C is then as in Equation 8.0.11.

Equation 8.0.11
costC(B) = δB ∗ costS(B)

This can then again be written as a difference in value to compare those
values with other values in the framework (Equation 8.0.12).

Equation 8.0.12

∆cost = costC(B) − costS(B)

References

[1] Zed Abbadi. “Security metrics what can we measure?” In: Open Web
Application Security Project (OWASP), Nova Chapter meeting presen-
tation on security metrics, viewed. Vol. 2. 2011.

[2] MH Abdullah and Reena Srivastava. “Testability Measurement Model
for Object Oriented Design (TMMOOD)”. In: arXiv preprint arXiv:1503.05493
(2015).

[3] Sareh Aghaei, Mohammad Ali Nematbakhsh, and Hadi Khosravi Farsani.
“Evolution of the world wide web: From WEB 1.0 TO WEB 4.0”. In:
International Journal of Web & Semantic Technology 3.1 (2012), p. 1.

[4] Jose Aguinaga. How it feels to learn JavaScript in 2016. [Online; ac-
cessed 21-February-2018]. 2016. url: https://hackernoon.com/how-
it-feels-to-learn-javascript-in-2016-d3a717dd577f.

[5] W. Albert and T. Tullis. Measuring the User Experience: Collecting,
Analyzing, and Presenting Usability Metrics. Interactive Technologies.
Elsevier Science, 2013. isbn: 9780124157927.

[6] Kristofer Baxter. Netflix Technology Blog - Making Netflix.com Faster.
[Online; accessed 10-January-2018]. 2015. url: http://techblog.
netflix.com/2015/08/making-netflixcom-faster.html.

[7] Tim Berners-Lee. “TheWorldWideWeb browser, 1990”. In: URL http://www.
w3. org/People/Berners-Lee/WorldWideWeb. html. Pristupljeno 5 (2013).

[8] Tim Berners-Lee and Daniel Connolly. “Hypertext markup language
(html)”. In: CERN, Geneva, Switzerland 13 (1993).

[9] Timothy J Berners-Lee. Information management: A proposal. Tech.
rep. 1989.

https://hackernoon.com/how-it-feels-to-learn-javascript-in-2016-d3a717dd577f
https://hackernoon.com/how-it-feels-to-learn-javascript-in-2016-d3a717dd577f
http://techblog.netflix.com/2015/08/making-netflixcom-faster.html
http://techblog.netflix.com/2015/08/making-netflixcom-faster.html

REFERENCES 61

[10] Andreas Biørn-Hansen, Tim A Majchrzak, and Tor-Morten Grønli.
“Progressive web apps: The possible web-native unifier for mobile de-
velopment”. In: Proceedings of the 13th International Conference on
Web Information Systems and Technologies. 2017, pp. 344–351.

[11] Spike Brehm. Airbnb Engineering & Data Science - Isomorphic JavaScript:
The Future of Web Apps. [Online; accessed 10-January-2018]. 2013.
url: http://nerds.airbnb.com/isomorphic-javascript-future-
web-apps/.

[12] Spike Brehm. The future of web apps is - ready? - isomorphic JavaScript.
[Online; accessed 24-May-2018]. 2013. url: https://venturebeat.
com/2013/11/08/the-future-of-web-apps-is-ready-isomorphic-
javascript/.

[13] BuiltWith. CMS Usage Statistics. [Online; accessed 20-May-2018]. 2018.
url: https://trends.builtwith.com/cms.

[14] BuiltWith. JavaScript Library Usage. [Online; accessed 11-June-2018].
2018. url: https://trends.builtwith.com/javascript/javascript-
library.

[15] BuiltWith. Laravel Usage Statistics. [Online; accessed 11-June-2018].
2018. url: https://trends.builtwith.com/framework/Laravel.

[16] BuiltWith. Programming Language Usage. [Online; accessed 2-June-
2018]. 2018. url: https : / / trends . builtwith . com / framework /
programming-language.

[17] Domain7 contributors. Usability vs. User Experience: What’s the dif-
ference? [Online; accessed 4-January-2018]. 2014. url: https://www.
slideshare.net/domain7/ux-vs-usability.

[18] Cliff Crocker, Aaron Kulick, and Balaji Ram. Real User Monitoring
@ Walmart.com: A Story in 3 Parts. [Online; accessed 28-December-
2017]. 2012. url: https://www.slideshare.net/devonauerswald/
walmart-pagespeedslide.

[19] Serge Demeyer. Software Metrics. [Online; accessed 30-December-2017].
2017. url: http://ansymore.uantwerpen.be/system/files/uploads/
courses/SE3BAC/10Metrics17.pdf.

[20] Sebastian De Deyne. Considering Single Page Applications. [Online;
accessed 1-June-2018]. 2018. url: https://sebastiandedeyne.com/
slides/considering-single-page-applications.pdf.

[21] Roger Dooley. Don’t Let a Slow Website Kill Your Bottom Line. [On-
line; accessed 28-December-2017]. 2012. url: https://www.forbes.
com/sites/rogerdooley/2012/12/04/fast-sites/#4f42d2eb53cf.

http://nerds.airbnb.com/isomorphic-javascript-future-web-apps/
http://nerds.airbnb.com/isomorphic-javascript-future-web-apps/
https://venturebeat.com/2013/11/08/the-future-of-web-apps-is-ready-isomorphic-javascript/
https://venturebeat.com/2013/11/08/the-future-of-web-apps-is-ready-isomorphic-javascript/
https://venturebeat.com/2013/11/08/the-future-of-web-apps-is-ready-isomorphic-javascript/
https://trends.builtwith.com/cms
https://trends.builtwith.com/javascript/javascript-library
https://trends.builtwith.com/javascript/javascript-library
https://trends.builtwith.com/framework/Laravel
https://trends.builtwith.com/framework/programming-language
https://trends.builtwith.com/framework/programming-language
https://www.slideshare.net/domain7/ux-vs-usability
https://www.slideshare.net/domain7/ux-vs-usability
https://www.slideshare.net/devonauerswald/walmart-pagespeedslide
https://www.slideshare.net/devonauerswald/walmart-pagespeedslide
http://ansymore.uantwerpen.be/system/files/uploads/courses/SE3BAC/10Metrics17.pdf
http://ansymore.uantwerpen.be/system/files/uploads/courses/SE3BAC/10Metrics17.pdf
https://sebastiandedeyne.com/slides/considering-single-page-applications.pdf
https://sebastiandedeyne.com/slides/considering-single-page-applications.pdf
https://www.forbes.com/sites/rogerdooley/2012/12/04/fast-sites/#4f42d2eb53cf
https://www.forbes.com/sites/rogerdooley/2012/12/04/fast-sites/#4f42d2eb53cf

REFERENCES 62

[22] Kit Eaton. How One Second Could Cost Amazon $1.6 Billion In Sales.
[Online; accessed 12-June-2018]. 2012. url: https://www.fastcompany.
com/1825005/how-one-second-could-cost-amazon-16-billion-
sales.

[23] Jason Farrell and George S Nezlek. “Rich internet applications the
next stage of application development”. In: Information Technology
Interfaces, 2007. ITI 2007. 29th International Conference on. IEEE.
2007, pp. 413–418.

[24] Matthias Felleisen. “On the expressive power of programming lan-
guages”. In: Science of computer programming 17.1-3 (1991), pp. 35–
75.

[25] Rudolf Ferenc, Péter Hegedűs, and Tibor Gyimóthy. “Software product
quality models”. In: Evolving software systems. Springer, 2014, pp. 65–
100.

[26] Dan Gebhardt. THE ’DEVELOPMENT DRAWBACKS’ OF JAVASCRIPT
WEB APPLICATIONS. [Online; accessed 21-February-2018]. 2013.
url: http://www.cerebris.com/blog/2013/08/08/the-development-
drawbacks-of-javascript-web-applications/.

[27] Brian Getting. “Basic Definitions: Web 1.0, Web. 2.0, Web 3.0”. In:
Practical eCommerce: Insights for Online Merchants. (2007). url: http:
//www.practicalecommerce.com/articles/464-Basic-Definitions-
Web-1-0-Web-2-0-Web-3-0.

[28] Github. Collection: Front-end JavaScript frameworks. [Online; accessed
2-November-2017]. 2017. url: https://github.com/collections/
front-end-javascript-frameworks.

[29] Gomez. Why Web Performance Matters: Is Your Site Driving Cus-
tomers Away? [Online; accessed 10-January-2018]. 2017. url: http:
//www.mcrinc.com/Documents/Newsletters/201110_why_web_
performance_matters.pdf.

[30] Sacha Greif. Front-end Frameworks. [Online; accessed 2-November-
2017]. 2016. url: http://stateofjs.com/2016/frontend/.

[31] Alex Grigoryan. The Benefits of Server Side Rendering Over Client
Side Rendering. [Online; accessed 20-February-2018]. 2017. url: https:
/ / medium . com / walmartlabs / the - benefits - of - server - side -
rendering-over-client-side-rendering-5d07ff2cefe8.

[32] Samer Hanna and Ali Alawneh. “An Approach of Web Service Quality
Attributes Specification”. In: Communications of the IBIMA Journal
(ISSN: 1943-7765) (2010).

https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
http://www.cerebris.com/blog/2013/08/08/the-development-drawbacks-of-javascript-web-applications/
http://www.cerebris.com/blog/2013/08/08/the-development-drawbacks-of-javascript-web-applications/
http://www.practicalecommerce.com/articles/464-Basic-Definitions-Web-1-0-Web-2-0-Web-3-0
http://www.practicalecommerce.com/articles/464-Basic-Definitions-Web-1-0-Web-2-0-Web-3-0
http://www.practicalecommerce.com/articles/464-Basic-Definitions-Web-1-0-Web-2-0-Web-3-0
https://github.com/collections/front-end-javascript-frameworks
https://github.com/collections/front-end-javascript-frameworks
http://www.mcrinc.com/Documents/Newsletters/201110_why_web_performance_matters.pdf
http://www.mcrinc.com/Documents/Newsletters/201110_why_web_performance_matters.pdf
http://www.mcrinc.com/Documents/Newsletters/201110_why_web_performance_matters.pdf
http://stateofjs.com/2016/frontend/
https://medium.com/walmartlabs/the-benefits-of-server-side-rendering-over-client-side-rendering-5d07ff2cefe8
https://medium.com/walmartlabs/the-benefits-of-server-side-rendering-over-client-side-rendering-5d07ff2cefe8
https://medium.com/walmartlabs/the-benefits-of-server-side-rendering-over-client-side-rendering-5d07ff2cefe8

REFERENCES 63

[33] Ilja Heitlager, Tobias Kuipers, and Joost Visser. “A practical model for
measuring maintainability”. In: Quality of Information and Communi-
cations Technology, 2007. QUATIC 2007. 6th International Conference
on the. IEEE. 2007, pp. 30–39.

[34] Cory House. Here’s Why Client-side Rendering Won – freeCodeCamp.
[Online; accessed 20-February-2018]. Dec. 2016. url: https://medium.
freecodecamp . org / heres - why - client - side - rendering - won -
46a349fadb52.

[35] Patrick Hund. SEO vs. React: Web Crawlers are Smarter Than You
Think. [Online; accessed 21-February-2018]. 2016. url: https://medium.
freecodecamp.org/seo-vs-react-is-it-neccessary-to-render-
react-pages-in-the-backend-74ce5015c0c9.

[36] solid IT. DB-Engines Ranking. [Online; accessed 11-June-2018]. 2018.
url: https://db-engines.com/en/ranking.

[37] Madhuri A Jadhav, Balkrishna R Sawant, and Anushree Deshmukh.
“Single page application using angularjs”. In: International Journal of
Computer Science and Information Technologies 6.3 (2015), pp. 2876–
2879.

[38] Benjamin Jakobus. VueJS vs Angular vs ReactJS with Demos. [Online;
accessed 5-June-2018]. 2017. url: http://www.dotnetcurry.com/
vuejs/1372/vuejs-vs-angular-reactjs-compare.

[39] Niklas Johansson and Anton Löfgren. “Designing for Extensibility: An
action research study of maximizing extensibility by means of design
principles”. B.S. thesis. 2009.

[40] Eirini Kalliamvakou et al. “The promises and perils of mining github”.
In: Proceedings of the 11th working conference on mining software
repositories. ACM. 2014, pp. 92–101.

[41] Yiannis Kanellopoulos et al. “Code quality evaluation methodology
using the ISO/IEC 9126 standard”. In: arXiv preprint arXiv:1007.5117
(2010).

[42] David Kreps and Kai Kimppa. “Theorising Web 3.0: ICTs in a changing
society”. In: Information Technology & People 28.4 (2015), pp. 726–
741.

[43] Gajus Kuizinas. Pre-rendering SPA for SEO and improved perceived
page loading speed. [Online; accessed 1-June-2018]. 2017. url: https:
//medium.com/@gajus/pre-rendering-spa-for-seo-and-improved-
perceived-page-loading-speed-47075aa16d24.

[44] Nupul Kukreja. Measuring Software Maintainability. [Online; accessed
1-June-2018]. 2015. url: https : / / quandarypeak . com / 2015 / 02 /
measuring-software-maintainability/.

https://medium.freecodecamp.org/heres-why-client-side-rendering-won-46a349fadb52
https://medium.freecodecamp.org/heres-why-client-side-rendering-won-46a349fadb52
https://medium.freecodecamp.org/heres-why-client-side-rendering-won-46a349fadb52
https://medium.freecodecamp.org/seo-vs-react-is-it-neccessary-to-render-react-pages-in-the-backend-74ce5015c0c9
https://medium.freecodecamp.org/seo-vs-react-is-it-neccessary-to-render-react-pages-in-the-backend-74ce5015c0c9
https://medium.freecodecamp.org/seo-vs-react-is-it-neccessary-to-render-react-pages-in-the-backend-74ce5015c0c9
https://db-engines.com/en/ranking
http://www.dotnetcurry.com/vuejs/1372/vuejs-vs-angular-reactjs-compare
http://www.dotnetcurry.com/vuejs/1372/vuejs-vs-angular-reactjs-compare
https://medium.com/@gajus/pre-rendering-spa-for-seo-and-improved-perceived-page-loading-speed-47075aa16d24
https://medium.com/@gajus/pre-rendering-spa-for-seo-and-improved-perceived-page-loading-speed-47075aa16d24
https://medium.com/@gajus/pre-rendering-spa-for-seo-and-improved-perceived-page-loading-speed-47075aa16d24
https://quandarypeak.com/2015/02/measuring-software-maintainability/
https://quandarypeak.com/2015/02/measuring-software-maintainability/

REFERENCES 64

[45] Sergey Laptick. Client Side vs Server Side UI Rendering. Advantages
and Disadvantages. [Online; accessed 20-February-2018]. 2017. url:
https://blog.webix.com/client- side- vs- server- side- ui-
rendering/.

[46] Tim Berners Lee. “HTTP 0.9”. In: (1991).

[47] Simon Lesser. Technical and On-Page SEO Guide for Baidu. [Online;
accessed 21-February-2018]. 2017. url: http://www.dragonmetrics.
com/technical-on-page-seo-guide-baidu/.

[48] Michael Lester. Measuring security. [Online; accessed 1-June-2018].
2016. url: https://www.csoonline.com/article/3112029/security-
awareness/measuring-security.html.

[49] HakonWium Lie. “Cascading HTML style sheets-a proposal”. In:World
Wide Web Consortium (W3C) (1994).

[50] Ben Lilburne et al. “Measuring quality metrics for web applications”.
In: Proceedings of the 15th Information Resources Management As-
sociation International Conference, held in New Orleans, USA, 23-26
May, 2004. 2004.

[51] Ari Luotonen, Henrik Frystyk, and Tim Berners-Lee. CERN HTTPD
public domain fullfeatured hypertext/proxy server with caching, 1994.

[52] Michael Mazzei. “Web 2.0.” In: Salem Press Encyclopedia of Science
(2017).

[53] Emilia Mendes, Nile Mosley, and Steve Counsell. “The need for web
engineering: An introduction”. In: Web Engineering. Springer, 2006,
pp. 1–27.

[54] Ali Mesbah. Analysis and Testing of Ajax-based Single-page Web Ap-
plications. Delft University of Technology, Netherlands, 2009.

[55] Ali Mesbah and Arie Van Deursen. “Migrating multi-page web appli-
cations to single-page Ajax interfaces”. In: Software Maintenance and
Reengineering, 2007. CSMR’07. 11th European Conference on. IEEE.
2007, pp. 181–190.

[56] Microsoft. Design Fundamentals: Quality Attributes. [Online; accessed
7-May-2018]. url: https://msdn.microsoft.com/en-us/library/
ee658094.aspx.

[57] Michael S Mikowski and Josh C Powell. “Single page web applications”.
In: B and W (2013).

[58] Luca Mugnaini. SPA and SEO: Google (Googlebot) properly renders
Single Page Application and execute Ajax calls. [Online; accessed 21-
February-2018]. 2017. url: https : / / medium . com / @l . mugnaini /
spa-and-seo-is-googlebot-able-to-render-a-single-page-
application-1f74e706ab11.

https://blog.webix.com/client-side-vs-server-side-ui-rendering/
https://blog.webix.com/client-side-vs-server-side-ui-rendering/
http://www.dragonmetrics.com/technical-on-page-seo-guide-baidu/
http://www.dragonmetrics.com/technical-on-page-seo-guide-baidu/
https://www.csoonline.com/article/3112029/security-awareness/measuring-security.html
https://www.csoonline.com/article/3112029/security-awareness/measuring-security.html
https://msdn.microsoft.com/en-us/library/ee658094.aspx
https://msdn.microsoft.com/en-us/library/ee658094.aspx
https://medium.com/@l.mugnaini/spa-and-seo-is-googlebot-able-to-render-a-single-page-application-1f74e706ab11
https://medium.com/@l.mugnaini/spa-and-seo-is-googlebot-able-to-render-a-single-page-application-1f74e706ab11
https://medium.com/@l.mugnaini/spa-and-seo-is-googlebot-able-to-render-a-single-page-application-1f74e706ab11

REFERENCES 65

[59] Doaa Nabil, Abeer Mosad, and Hesham A Hefny. “Web-Based Appli-
cations quality factors: A survey and a proposed conceptual model”.
In: Egyptian Informatics Journal 12.3 (2011), pp. 211–217.

[60] Muhammad Nadeem et al. “Analysis and Comparison of Web Devel-
opment Platforms Based on Software Quality Attributes in Network
Management System”. In: Journal of Advances in Computer Networks.
Vol. 5. 1. Springer. 2017, pp. 18–21.

[61] Kazushi Nagayama. Google Webmaster Central Blog: Deprecating our
AJAX crawling scheme. [Online; accessed 21-February-2018]. 2015.
url: https://webmasters.googleblog.com/2015/10/deprecating-
our-ajax-crawling-scheme.html.

[62] Fiona Fui-Hoon Nah. “A study on tolerable waiting time: how long
are Web users willing to wait?” In: Behaviour & Information Technol-
ogy 23.3 (2004), pp. 153–163. doi: 10.1080/01449290410001669914.
eprint: https://doi.org/10.1080/01449290410001669914. url:
https://doi.org/10.1080/01449290410001669914.

[63] Jeff Offutt. “Web software applications quality attributes”. In: Qual-
ity Engineering in Software Technology (CONQUEST 2002) (2002),
pp. 187–198.

[64] Vivek Ojha. 12 Attributes of a good web application architecture. [On-
line; accessed 1-June-2018]. 2015. url: https://www.linkedin.com/
pulse / 12 - attributes - good - web - application - architecture -
vivek-ojha/.

[65] Luis Olsina, Guillermo Lafuente, and Gustavo Rossi. “Specifying qual-
ity characteristics and attributes for websites”. In: Web Engineering.
Springer, 2001, pp. 266–278.

[66] Tim O’Reilly. “Web 2.0 Compact definition: trying again. 2006”. In:
http://radar.oreilly.com/2006/12/web-20-compact-definition-tryi. html.
Acesso em 18.01 (2008), p. 215.

[67] Tim O’reilly. What is web 2.0. 2005.

[68] Meysam Ahmadi Oskooei, Salwani Binti Mohd Daud, and Fang-Fang
Chua. “Modeling quality attributes and metrics for web service selec-
tion”. In: AIP Conference Proceedings. Vol. 1602. 1. AIP. 2014, pp. 945–
952.

[69] Pingdom. A history of the dynamic web. [Online; accessed 6-May-2018].
2007. url: https://royal.pingdom.com/2007/12/07/a-history-
of-the-dynamic-web/.

[70] Max Pool. The 7 Software “-ilities” You Need To Know. [Online; ac-
cessed 7-May-2018]. 2007. url: http://codesqueeze.com/the-7-
software-ilities-you-need-to-know/.

https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://doi.org/10.1080/01449290410001669914
https://doi.org/10.1080/01449290410001669914
https://doi.org/10.1080/01449290410001669914
https://www.linkedin.com/pulse/12-attributes-good-web-application-architecture-vivek-ojha/
https://www.linkedin.com/pulse/12-attributes-good-web-application-architecture-vivek-ojha/
https://www.linkedin.com/pulse/12-attributes-good-web-application-architecture-vivek-ojha/
https://royal.pingdom.com/2007/12/07/a-history-of-the-dynamic-web/
https://royal.pingdom.com/2007/12/07/a-history-of-the-dynamic-web/
http://codesqueeze.com/the-7-software-ilities-you-need-to-know/
http://codesqueeze.com/the-7-software-ilities-you-need-to-know/

REFERENCES 66

[71] Clark Quinn. Beyond Web 2.0. [Online; accessed 7-May-2018]. 2009.
url: https://blog.learnlets.com/2009/07/beyond-web-2-0/.

[72] Alex Russell. Progressive Web Apps: Escaping Tabs Without Losing
Our Soul. [Online; accessed 7-May-2018]. 2015. url: https://infrequently.
org/2015/06/progressive-apps-escaping-tabs-without-losing-
our-soul/.

[73] Fintan Ryan. Language Framework Popularity: A Look at PHP. [On-
line; accessed 2-June-2018]. 2016. url: http://redmonk.com/fryan/
2016/11/01/language-framework-popularity-a-look-at-php/.

[74] Durgesh Samadhiya, Su-Hua Wang, and Dengjie Chen. “Quality mod-
els: Role and value in software engineering”. In: Software Technol-
ogy and Engineering (ICSTE), 2010 2nd International Conference on.
Vol. 1. IEEE. 2010, pp. V1–320.

[75] Alberto Savoia. “The science and art of web site load testing”. In: Inter-
national Conference on Software Testing Analysis & Review, Orlando,
FL. 2000.

[76] Britt Selvitelle. The Tech Behind the New Twitter.com. [Online; ac-
cessed 10-January-2018]. 2010. url: https://blog.twitter.com/
engineering/en_us/a/2010/the-tech-behind-the-new-twittercom.
html.

[77] Brett Slatkin. Experimentally verified: ’Why client-side templating is
wrong’. [Online; accessed 21-February-2018]. 2015. url: https : / /
www.onebigfluke.com/2015/01/experimentally-verified-why-
client-side.html.

[78] D. Soman and S. N-Marandi. Managing Customer Value: One Stage
at a Time. World Scientific, 2010. isbn: 9789812838278.

[79] Steve Souders. “High-performance web sites”. In: Communications of
the ACM 51.12 (2008), pp. 36–41.

[80] Wiktor Stadnik and Ziemowit Nowak. “The Impact of Web Pages’
Load Time on the Conversion Rate of an E-Commerce Platform”. In:
(2017), pp. 336–345.

[81] A. Sviatoslav. The Best JS Frameworks for Front End. [Online; ac-
cessed 11-June-2018]. url: https://rubygarage.org/blog/best-
javascript-frameworks-for-front-end.

[82] TechMagic. ReactJS vs Angular5 vs Vue.js – What to choose in 2018?
[Online; accessed 6-June-2018]. 2018. url: https://medium.com/
@TechMagic/reactjs-vs-angular5-vs-vue-js-what-to-choose-
in-2018-b91e028fa91d.

[83] Google Trends. REST API vs SOAP API vs GraphQL API. [Online;
accessed 11-June-2018]. 2018. url: https://g.co/trends/PTjYq.

https://blog.learnlets.com/2009/07/beyond-web-2-0/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
http://redmonk.com/fryan/2016/11/01/language-framework-popularity-a-look-at-php/
http://redmonk.com/fryan/2016/11/01/language-framework-popularity-a-look-at-php/
https://blog.twitter.com/engineering/en_us/a/2010/the-tech-behind-the-new-twittercom.html
https://blog.twitter.com/engineering/en_us/a/2010/the-tech-behind-the-new-twittercom.html
https://blog.twitter.com/engineering/en_us/a/2010/the-tech-behind-the-new-twittercom.html
https://www.onebigfluke.com/2015/01/experimentally-verified-why-client-side.html
https://www.onebigfluke.com/2015/01/experimentally-verified-why-client-side.html
https://www.onebigfluke.com/2015/01/experimentally-verified-why-client-side.html
https://rubygarage.org/blog/best-javascript-frameworks-for-front-end
https://rubygarage.org/blog/best-javascript-frameworks-for-front-end
https://medium.com/@TechMagic/reactjs-vs-angular5-vs-vue-js-what-to-choose-in-2018-b91e028fa91d
https://medium.com/@TechMagic/reactjs-vs-angular5-vs-vue-js-what-to-choose-in-2018-b91e028fa91d
https://medium.com/@TechMagic/reactjs-vs-angular5-vs-vue-js-what-to-choose-in-2018-b91e028fa91d
https://g.co/trends/PTjYq

REFERENCES 67

[84] Malte Ubl. Tradeoffs in server side and client side rendering. [On-
line; accessed 21-February-2018]. 2015. url: https://medium.com/
google- developers/tradeoffs- in- server- side- and- client-
side-rendering-14dad8d4ff8b.

[85] Edward Upton. How does page load speed affect bounce rate? [Online;
accessed 28-December-2017]. 2017. url: https://blog.littledata.
io/2017/04/07/how- does- page- load- speed- affect- bounce-
rate/.

[86] Chad Van Lier. How Single Page Applications (SPAs) Can Dramat-
ically Improve Your Customer Experience. [Online; accessed 1-June-
2018]. 2017. url: https://www.exclamationlabs.com/blog/how-
single- page- applications- spas- can- dramatically- improve-
your-customer-experience/.

[87] Shiju Varghese. Introduction to Web Development in Go. [Online; ac-
cessed 2-June-2018]. 2016. url: https://blog.rubylearning.com/
introduction-to-web-development-in-go-3a126626eab.

[88] W3Techs. Usage of JavaScript libraries for websites. [Online; accessed
11-June-2018]. 2018. url: https://w3techs.com/technologies/
overview/javascript_library/all.

[89] W3Techs. Usage of server-side programming languages for websites.
[Online; accessed 11-June-2018]. 2018. url: https://w3techs.com/
technologies/overview/programming_language/all.

[90] Dan Webb. Improving performance on twitter.com. [Online; accessed
10-January-2018]. 2012. url: https://blog.twitter.com/engineering/
en_us/a/2012/improving-performance-on-twittercom.html.

[91] Jeff Whelpley. Use Cases for Server Side Rendering. [Online; accessed
1-June-2018]. 2015. url: https://medium.com/@jeffwhelpley/use-
cases-for-server-side-rendering-2fc6389b3f7d.

[92] Joost Willemsen. Improving User Workflows with Single-Page User In-
terfaces. [Online; accessed 1-June-2018]. 2006. url: https://www.
uxmatters.com/mt/archives/2006/11/improving-user-workflows-
with-single-page-user-interfaces.php.

[93] Lloyd G Williams and Connie U Smith. “Web Application Scalability:
A Model-Based Approach.” In: Int. CMG Conference. 2004, pp. 215–
226.

[94] Alexander Zarges. Client vs serverside rendering – the big battle? [On-
line; accessed 1-June-2018]. 2013. url: https://blog.mwaysolutions.
com/2013/11/08/client- vs- serverside- rendering- the- big-
battle-2/.

https://medium.com/google-developers/tradeoffs-in-server-side-and-client-side-rendering-14dad8d4ff8b
https://medium.com/google-developers/tradeoffs-in-server-side-and-client-side-rendering-14dad8d4ff8b
https://medium.com/google-developers/tradeoffs-in-server-side-and-client-side-rendering-14dad8d4ff8b
https://blog.littledata.io/2017/04/07/how-does-page-load-speed-affect-bounce-rate/
https://blog.littledata.io/2017/04/07/how-does-page-load-speed-affect-bounce-rate/
https://blog.littledata.io/2017/04/07/how-does-page-load-speed-affect-bounce-rate/
https://www.exclamationlabs.com/blog/how-single-page-applications-spas-can-dramatically-improve-your-customer-experience/
https://www.exclamationlabs.com/blog/how-single-page-applications-spas-can-dramatically-improve-your-customer-experience/
https://www.exclamationlabs.com/blog/how-single-page-applications-spas-can-dramatically-improve-your-customer-experience/
https://blog.rubylearning.com/introduction-to-web-development-in-go-3a126626eab
https://blog.rubylearning.com/introduction-to-web-development-in-go-3a126626eab
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/programming_language/all
https://w3techs.com/technologies/overview/programming_language/all
https://blog.twitter.com/engineering/en_us/a/2012/improving-performance-on-twittercom.html
https://blog.twitter.com/engineering/en_us/a/2012/improving-performance-on-twittercom.html
https://medium.com/@jeffwhelpley/use-cases-for-server-side-rendering-2fc6389b3f7d
https://medium.com/@jeffwhelpley/use-cases-for-server-side-rendering-2fc6389b3f7d
https://www.uxmatters.com/mt/archives/2006/11/improving-user-workflows-with-single-page-user-interfaces.php
https://www.uxmatters.com/mt/archives/2006/11/improving-user-workflows-with-single-page-user-interfaces.php
https://www.uxmatters.com/mt/archives/2006/11/improving-user-workflows-with-single-page-user-interfaces.php
https://blog.mwaysolutions.com/2013/11/08/client-vs-serverside-rendering-the-big-battle-2/
https://blog.mwaysolutions.com/2013/11/08/client-vs-serverside-rendering-the-big-battle-2/
https://blog.mwaysolutions.com/2013/11/08/client-vs-serverside-rendering-the-big-battle-2/

REFERENCES 68

[95] Adam Zerner. Client-side rendering vs. server-side rendering. [Online;
accessed 21-February-2018]. 2017. url: https://medium.com/@adamzerner/
client-side-rendering-vs-server-side-rendering-a32d2cf3bfcc.

[96] Luyin Zhao and Sebastian Elbaum. “Quality assurance under the open
source development model”. In: Journal of Systems and Software 66.1
(2003), pp. 65–75.

[97] Hazura Zulzalil et al. “A case study to identify quality attributes rela-
tionships for web-based applications”. In: IJCSNS 8.11 (2008), p. 215.

https://medium.com/@adamzerner/client-side-rendering-vs-server-side-rendering-a32d2cf3bfcc
https://medium.com/@adamzerner/client-side-rendering-vs-server-side-rendering-a32d2cf3bfcc

Appendix

Survey
Pie-charts
Demographic Related Questions

17%

83%

Professional
Student
Hobbyist
Retired

Figure 8.1: Occupation of the respondents

2%
2%

6%
8%

13%

19%

52%

Bachelor’s degree
Master’s degree
Some college/universitywithout earning a degree
Secondary school
Associate degree
Primary/elementary school
Professional degree
I never completed any formal education
Doctoral degree

Figure 8.2: Highest Education of the respondents

APPENDIX 70

3%

6%

2%

6%

2%

8%

6%

20%

30%

16%

2%

No experience
0 - 2 years
3 - 5 years
6 - 8 years
9 - 11 years
12 - 14 years
15 - 17 years
18 - 20 years
21 - 23 years
24 - 26 years
27 - 29 years
30 or more years

Figure 8.3: Experience in Software Development

19%

81%

Yes No

Figure 8.4: Experience with client-side rendering frame-
works (like Angular, Vue, React).

APPENDIX 71

Quality Attributes Related Questions

29%

27%

44%

Client-side rendering
Server-side rendering
It doesn't matter

Figure 8.5: Preference of paradigm.

14%

21%

11%
10%

14%

18%

11%

Testability Development Effort Code Quality Extendability
Scalability Performance Usability

Figure 8.6: Which metrics have the most influence on the
choice of paradigm.

APPENDIX 72

14%

27%

44%

16%

Client-side rendering Server-side rendering
There is no noticeable difference I don't know

Figure 8.7: Which paradigm is most testable.

16%

39%
8%

38%

Client-side rendering Server-side rendering
There is no noticeable difference I don't know

Figure 8.8: Which paradigm is most modifiable.

8%

22%

11%
59%

Client-side rendering Server-side rendering
There is no noticeable difference I don't know

Figure 8.9: Which paradigm is most flexible.

APPENDIX 73

8%

22%

22%

48%

Client-side rendering Server-side rendering
There is no noticeable difference I don't know

Figure 8.10: Which paradigm requires most development
effort.

13%

38%

9%

41%

Client-side rendering Server-side rendering
There is no noticeable difference I don't know

Figure 8.11: Which paradigm yields most duplicate code.

19%

31%

13%

38%

Client-side rendering Server-side rendering
There is no noticeable difference I don't know

Figure 8.12: Which paradigm yields code defects/bugs.

APPENDIX 74

5%

30%

36%

30%

Client-side rendering Server-side rendering
There is no noticeable difference I don't know

Figure 8.13: Which paradigm yields more maintainable
code?

16%

27%

31%

27%

Client-side rendering Server-side rendering
There is no noticeable difference I don't know

Figure 8.14: Which paradigm yields more efficient code?

9%

19%

22%

50%

Client-side rendering Server-side rendering
There is no noticeable difference I don't know

Figure 8.15: Which paradigm yields better usability?

APPENDIX 75

19%

30%

17%

34%

Client-side rendering Server-side rendering
There is no noticeable difference I don't know

Figure 8.16: Which paradigm results in best extendability?

14%

16%

22%

48%

Client-side rendering Server-side rendering
There is no noticeable difference I don't know

Figure 8.17: Which paradigm scales best?

39%

14%

47%

Client-side rendering still isn't optimal yet regarding SEO
There is no noticeable difference
I don't know

Figure 8.18: Do you think the impact of client-side render-
ing on SEO is still noticeable anno 2018?

APPENDIX 76

31%

20%

48%

Client-side rendering yields higher server load
Server-side rendering yields higher server load
There is not noticeable difference
I don't know

Figure 8.19: Did you notice impact on server load using
one of the paradigms?

Thesis Survey
Comparing Client-side rendering with Server-side rendering
June 6, 2018 9:52 AM MDT

1 - Age

Under 18 years old

18 - 24 years old

25 - 34 years old

35 - 44 years old

45 - 54 years old

55 - 64 years old

65 years or older

0 5 10 15 20 25 30

Showing Rows: 1 - 8 Of 8

Field
Choice
Count

1 Under 18 years old 0.00% 0

2 18 - 24 years old 33.33% 21

3 25 - 34 years old 49.21% 31

4 35 - 44 years old 11.11% 7

5 45 - 54 years old 4.76% 3

6 55 - 64 years old 1.59% 1

7 65 years or older 0.00% 0

63

APPENDIX 77

Complete Survey Questions with Answers

1-1 - Occupation

Student

Professional

Hobbyist

Retired

0 5 10 15 20 25 30 35 40 45 50 55

Showing Rows: 1 - 5 Of 5

Field
Choice
Count

1 Student 15.87% 10

2 Professional 84.13% 53

3 Hobbyist 0.00% 0

4 Retired 0.00% 0

63

APPENDIX 78

1-2 - Gender

Male

Female

Non-binary,
genderqueer, or

gender
non-conforming

I do not want to
disclose this

0 5 10 15 20 25 30 35 40 45 50 55 60

Showing Rows: 1 - 5 Of 5

Field
Choice
Count

1 Male 93.65% 59

2 Female 4.76% 3

3 Non-binary, genderqueer, or gender non-conforming 0.00% 0

4 I do not want to disclose this 1.59% 1

63

APPENDIX 79

1-3 - Highest Education

I never completed
any formal education

Primary/elementary
school

Secondary school

Some
college/university
without earning a

degree

Associate degree

Bachelor’s degree

Master’s degree

Professional degree

Doctoral degree

0 5 10 15 20 25 30 35

Showing Rows: 1 - 10 Of 10

Field
Choice
Count

1 I never completed any formal education 0.00% 0

2 Primary/elementary school 1.59% 1

3 Secondary school 7.94% 5

4 Some college/university without earning a degree 12.70% 8

5 Associate degree 6.35% 4

6 Bachelor’s degree 50.79% 32

7 Master’s degree 19.05% 12

8 Professional degree 1.59% 1

9 Doctoral degree 0.00% 0

63

APPENDIX 80

1-4 - Experience in Software Development

No experience

0 - 2 years

3 - 5 years

6 - 8 years

9 - 11 years

12 - 14 years

15 - 17 years

18 - 20 years

21 - 23 years

24 - 26 years

27 - 29 years

30 or more years

0 2 4 6 8 10 12 14 16 18

Field
Choice
Count

1 No experience 1.59% 1

2 0 - 2 years 15.87% 10

3 3 - 5 years 28.57% 18

4 6 - 8 years 20.63% 13

5 9 - 11 years 6.35% 4

6 12 - 14 years 7.94% 5

7 15 - 17 years 1.59% 1

8 18 - 20 years 6.35% 4

9 21 - 23 years 1.59% 1

10 24 - 26 years 6.35% 4

APPENDIX 81

Showing Rows: 1 - 13 Of 13

11 27 - 29 years 0.00% 0

12 30 or more years 3.17% 2

63

APPENDIX 82

1-5 - Years Since Learning to Code

0-2 years

3-5 years

6-8 years

9-11 years

12-14 years

15-17 years

18-20 years

21-23 years

24-26 years

27-29 years

30 or more years

0 2 4 6 8 10 12 14 16 18

Field
Choice
Count

1 0-2 years 6.35% 4

2 3-5 years 9.52% 6

3 6-8 years 26.98% 17

4 9-11 years 12.70% 8

5 12-14 years 19.05% 12

6 15-17 years 4.76% 3

7 18-20 years 11.11% 7

8 21-23 years 1.59% 1

9 24-26 years 1.59% 1

10 27-29 years 1.59% 1

11 30 or more years 4.76% 3

APPENDIX 83

Showing Rows: 1 - 12 Of 12

63

APPENDIX 84

1-6 - Years of Professional Coding Experience

0-2 years

3-5 years

6-8 years

9-11 years

12-14 years

15-17 years

18-20 years

21-23 years

24-26 years

27-29 years

30 or more years

0 2 4 6 8 10 12 14 16 18 20 22 24

Field
Choice
Count

1 0-2 years 36.51% 23

2 3-5 years 23.81% 15

3 6-8 years 17.46% 11

4 9-11 years 6.35% 4

5 12-14 years 7.94% 5

6 15-17 years 1.59% 1

7 18-20 years 4.76% 3

8 21-23 years 0.00% 0

9 24-26 years 1.59% 1

10 27-29 years 0.00% 0

11 30 or more years 0.00% 0

APPENDIX 85

Showing Rows: 1 - 12 Of 12

63

APPENDIX 86

1-7 - Company Size

Fewer than 10
employees

10 to 19 employees

20 to 99 employees

100 to 499
employees

500 to 999
employees

1,000 to 4,999
employees

5,000 to 9,999
employees

10,000 or more
employees

0 2 4 6 8 10 12 14 16 18 20 22

Showing Rows: 1 - 9 Of 9

Field
Choice
Count

1 Fewer than 10 employees 40.38% 21

2 10 to 19 employees 19.23% 10

3 20 to 99 employees 15.38% 8

4 100 to 499 employees 9.62% 5

5 500 to 999 employees 1.92% 1

6 1,000 to 4,999 employees 1.92% 1

7 5,000 to 9,999 employees 1.92% 1

8 10,000 or more employees 9.62% 5

52

APPENDIX 87

1-8 - Do you have experience with client-side rendering frameworks / single page

application frameworks (like Angular, React, Vue, ...)?

Yes

No

0 5 10 15 20 25 30 35 40 45 50 55

Showing Rows: 1 - 3 Of 3

Field
Choice
Count

1 Yes 80.95% 51

2 No 19.05% 12

63

APPENDIX 88

1-9 - What’s your preference? Server-side rendering or client-side rendering?

45.16%

25.81%

29.03%

 Client-side rendering Server-side rendering It doesn't matter

Showing Rows: 1 - 4 Of 4

Field
Choice
Count

1 Client-side rendering 45.16% 28

2 Server-side rendering 25.81% 16

3 It doesn't matter 29.03% 18

62

Client-side rendering

Server-side rendering

It doesn't matter

0 5 10 15 20 25 30

APPENDIX 89

1-10 - Which of the following metrics influence your choice between server-side rendering

and client-side rendering the most?

Testability

Development Effort

Code Quality

Extendability

Scalability

Performance

Usability

0 5 10 15 20 25 30 35 40 45

Showing Rows: 1 - 8 Of 8

Field Choice Count

1 Testability 10.29% 21

2 Development Effort 18.63% 38

3 Code Quality 14.71% 30

4 Extendability 10.29% 21

5 Scalability 11.27% 23

6 Performance 20.59% 42

7 Usability 14.22% 29

204

APPENDIX 90

1-11 - Which paradigm is most testable?

Client-side rendering

Server-side rendering

There is no
noticeable difference

I don't know

0 5 10 15 20 25 30

Showing Rows: 1 - 5 Of 5

Field
Choice
Count

1 Client-side rendering 14.29% 9

2 Server-side rendering 44.44% 28

3 There is no noticeable difference 26.98% 17

4 I don't know 14.29% 9

63

APPENDIX 91

1-12 - Which paradigm is more modifiable?

Client-side rendering

Server-side rendering

There is no
noticeable difference

I don't know

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Showing Rows: 1 - 5 Of 5

Field
Choice
Count

1 Client-side rendering 38.10% 24

2 Server-side rendering 7.94% 5

3 There is no noticeable difference 39.68% 25

4 I don't know 14.29% 9

63

APPENDIX 92

1-13 - Which paradigm is more flexible?

Client-side rendering

Server-side rendering

There is no
noticeable difference

I don't know

0 5 10 15 20 25 30 35 40

Showing Rows: 1 - 5 Of 5

Field
Choice
Count

1 Client-side rendering 58.73% 37

2 Server-side rendering 11.11% 7

3 There is no noticeable difference 22.22% 14

4 I don't know 7.94% 5

63

APPENDIX 93

1-14 - Which paradigm requires most development effort?

Client-side rendering

Server-side rendering

There is no
noticeable difference

I don't know

0 5 10 15 20 25 30

Showing Rows: 1 - 5 Of 5

Field
Choice
Count

1 Client-side rendering 49.21% 31

2 Server-side rendering 22.22% 14

3 There is no noticeable difference 22.22% 14

4 I don't know 6.35% 4

63

APPENDIX 94

1-15 - Which paradigm yields most duplicate code?

Client-side rendering

Server-side rendering

There is no
noticeable difference

I don't know

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Showing Rows: 1 - 5 Of 5

Field
Choice
Count

1 Client-side rendering 39.68% 25

2 Server-side rendering 9.52% 6

3 There is no noticeable difference 38.10% 24

4 I don't know 12.70% 8

63

APPENDIX 95

1-16 - Which one of the paradigms yields more code defects/bugs?

Client-side rendering

Server-side rendering

There is no
noticeable difference

I don't know

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Showing Rows: 1 - 5 Of 5

Field
Choice
Count

1 Client-side rendering 38.10% 24

2 Server-side rendering 12.70% 8

3 There is no noticeable difference 30.16% 19

4 I don't know 19.05% 12

63

APPENDIX 96

1-17 - Which paradigm yields more maintainable code?

Client-side rendering

Server-side rendering

There is no
noticeable difference

I don't know

0 2 4 6 8 10 12 14 16 18 20 22 24

Showing Rows: 1 - 5 Of 5

Field
Choice
Count

1 Client-side rendering 28.57% 18

2 Server-side rendering 36.51% 23

3 There is no noticeable difference 30.16% 19

4 I don't know 4.76% 3

63

APPENDIX 97

1-18 - Which paradigm yields more efficient code?

Client-side rendering

Server-side rendering

There is no
noticeable difference

I don't know

0 2 4 6 8 10 12 14 16 18 20 22

Showing Rows: 1 - 5 Of 5

Field
Choice
Count

1 Client-side rendering 26.98% 17

2 Server-side rendering 31.75% 20

3 There is no noticeable difference 26.98% 17

4 I don't know 14.29% 9

63

APPENDIX 98

1-19 - Which paradigm yields better usability?

Client-side rendering

Server-side rendering

There is no
noticeable difference

I don't know

0 5 10 15 20 25 30 35

Showing Rows: 1 - 5 Of 5

Field
Choice
Count

1 Client-side rendering 50.79% 32

2 Server-side rendering 20.63% 13

3 There is no noticeable difference 19.05% 12

4 I don't know 9.52% 6

63

APPENDIX 99

1-20 - Which paradigm results in best extendability?

Client-side rendering

Server-side rendering

There is no
noticeable difference

I don't know

0 2 4 6 8 10 12 14 16 18 20 22

Showing Rows: 1 - 5 Of 5

Field
Choice
Count

1 Client-side rendering 33.33% 21

2 Server-side rendering 17.46% 11

3 There is no noticeable difference 30.16% 19

4 I don't know 19.05% 12

63

APPENDIX 100

1-21 - Which paradigm scales best?

Client-side rendering

Server-side rendering

There is no
noticeable difference

I don't know

0 5 10 15 20 25 30

Showing Rows: 1 - 5 Of 5

Field
Choice
Count

1 Client-side rendering 47.62% 30

2 Server-side rendering 22.22% 14

3 There is no noticeable difference 15.87% 10

4 I don't know 14.29% 9

63

APPENDIX 101

1-22 - Do you think the impact of client-side rendering on SEO is still noticeable anno

2018?

Client-side rendering
still isn't optimal

yet regarding SEO

There is no noticeable
difference

I don't know

0 5 10 15 20 25 30

Showing Rows: 1 - 4 Of 4

Field
Choice
Count

1 Client-side rendering still isn't optimal yet regarding SEO 46.03% 29

2 There is no noticeable difference 14.29% 9

3 I don't know 39.68% 25

63

APPENDIX 102

1-23 - Did you notice impact on server load using one of the paradigms?

End of Report

Client-side rendering
yields higher server

load

Server-side rendering
yields higher server

load

There is not
noticeable difference

I don't know

0 5 10 15 20 25 30

Showing Rows: 1 - 5 Of 5

Field
Choice
Count

1 Client-side rendering yields higher server load 0.00% 0

2 Server-side rendering yields higher server load 49.21% 31

3 There is not noticeable difference 20.63% 13

4 I don't know 30.16% 19

63

APPENDIX 103

APPENDIX 104

Case Study Waterfalls

Figure 8.20: Network waterfall of client-side rendering for
initial page load for Wordpress theme.

APPENDIX 105

Figure 8.21: Network waterfall of server-side rendering for
initial page load for Wordpress theme.

APPENDIX 106

Figure 8.22: Network waterfall of client-side rendering for
next page load for Wordpress theme.

Figure 8.23: Network waterfall of server-side rendering for
next page load for Wordpress theme.

	Nederlandstalige Samenvatting
	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Why Compare Client-side with Server-side Rendering
	How Compare Client-side with Server-side Rendering?
	Thesis Outline

	Background
	Client-side rendering and server-side rendering
	Server-side rendering
	Client-side rendering

	Evolution of Web development
	The World Wide Web
	Evolution of Technologies
	Evolution of Web and Technologies

	Overview of Technology Stack

	Software Quality Attributes
	Quality Attributes
	Usability & User Experience
	Performance
	Development Effort
	Maintainability
	Scalability
	Compatibility
	Security
	Reliability & Availability

	Opinion of Developers on Quality Attributes
	Survey Questions
	Results from Survey

	Conclusion

	Pilot Study
	Methodology
	Web application
	Measurement tools

	Results
	Client: initial page load time
	Client: subsequent page load time
	Server: throughput
	Server: bandwidth
	Development Effort

	Conclusion

	Case Study on Existing Projects
	Motivation
	Methodology
	Selecting Repositories
	Analysis

	Analysed Repositories and Their Characteristics
	Results
	Client: initial page load time & subsequent page load time
	Server: throughput
	Server: bandwidth
	Scalability
	Development Effort
	Availability

	Conclusion

	Threats To Validity
	Conclusions
	Future Work
	References
	Appendix

